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Abstract: During last years, a lot of works in robotic research have explored
Human-Robot interactions. Hence, a great challenge in next future will be the
personal robot, with perception faculties which will enable a wide range of activities
such as human localization and tracking, gesture recognition and interpretation,
or object manipulation.
In this paper, we will focus on human perception and we will present a human
aware system implemented on a mobile robot. This system uses data from various
sensors to be able to localize and to track a human presence in a wide range of
distances. An exploitation of all these modalities is presented in a demo showing
the robot giving an object to a person.
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1. INTRODUCTION

Autonomous robots have been improved for the
last years, being able to adapt to always more
complex environments. In the perspective to elab-
orate a “personal robot”, one of the most chal-
lenging of these environments is the human one.
Robots will have to be able to adapt to social
environments and the human presence must be
taken in account. Moreover, if we want the robot
to interact with humans, and not only to move
itself among them, perception abilities must be
even more accurate in order to interpret visual
or spoken orders, or to accomplish tasks such as
exchanging an object with a person.

Thus, the work presented here mainly focuses on
the perception abilities of the Jido robot, a mobile
platform designed for human robot interaction, on
which we work at LAAS-CNRS.

The work described in this paper is conducted
within the EU Integrated Project COGNIRON
(“The Cognitive Robot Companion”) and funded
by European Commission Division FP6-IST Fu-
ture and Emerging Technologies under Contract
FP6-002020.

In section 2, we present a few technical character-
istics of the robot. Section 3 details the 4 mod-
ules involved in the scenario. Results are shown
and commented in section 4 and, finally, section



5 concludes our work and presents some future
experiments.

2. JIDO PRESENTATION

2.1 Hardware

Jido, a MP-L655 platform from Neobotix, is a
mobile robot designed to interact with human
beings. It is presented on figure 1(a).

Jido is equipped with: (i) a 6-DOF arm, (ii) a pan-
tilt unit system at the top of a mast (dedicated to
human-robot interaction mechanisms), (iii) a 3D
swissranger camera and (iv) a stereo camera, both
embedded on the pan tilt unit, (v) a second video
system fixed on the arm wrist for object grasping,
(vi) two laser scanners, (vii) one panelPC with
tactile screen for interaction purpose, and (viii)
one screen to provide feedback to the robot user.
Jido has been endowed with functions enabling
to act as robot companion and especially to ex-
change objects with human beings. So, it embeds
robust and efficient basic navigation and object
recognition abilities.

In the human perception demonstration we present
in this paper, we use the stereo camera and the
swissranger device mounted on the pan-tilt unit,
as well as the front laser sensor.

2.2 Software

Jido is fitted with the “LAAS” software architec-
ture thoroughly presented in (Alami et al., 1998).
On the top of the hardware (sensors and effectors),
the functional level listed in figure 1(b), encapsu-
lates all the robot’s action and perception capa-
bilities into controllable communicating modules,
operating at very strong temporal constraints.
The executive level activates these modules, con-
trols the embedded functions, and coordinates the
services depending on the task high-level require-
ments. Finally, the upper decision level copes with
task planning and supervision, while remaining
reactive to events from the execution control level.

3. THE HUMAN PERCEPTION MODULES

Human perception abilities are split in 4 modules:

3.1 The Gest module

The goal of this module is to provide a 3D
human hand tracking from the video stream
of a stereoscopic system. Actually, the hand
is modeled by a 3D deformable ellipsoid. We

fit the template through the estimation of its
space coordinates (x, y, z), its size (ax, ay, az),
and its orientation (θ, φ, ψ). All these param-
eters are included in the state vector xk =
(xk, yk, zk, axk, ayk, azk, θk, φk, ψk) related to the
k − th frame.

As the robot’s evolution takes place into dynamic
and cluttered environments, several hypotheses
must be handled at each instant concerning the
tracker parameters to be estimated. Particle fil-
tering thus seems well suited to this context.
Moreover, in our context, the tracked hand can
temporarily leave the camera field of view; that’s
why it needs automatic reinitialization. Therefore
we based our tracker on the I-Condensation algo-
rithm (Isard and Blake, 1998).

With regard to the dynamics model p(xk|xk−1),
the hand motion is difficult to characterize over
time. We assume that the state vector entries
evolve according to mutually independent random
walk models, viz. p(xk|xk−1) = N (xk|xk−1,∆),
where N (.|η,∆) is a Gaussian distribution with
mean η and covariance
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In order to evaluate our 3D particles after their
generation, we have to project them on the stereo
images. The corresponding ellipses are obtained
by a common quadric projection (Menezes et
al., 2005).

Let us now characterize both importance and
measurement functions involved in our tracker.

3.1.1. Measurement function Our measurement
function is based on skin color probability images
and is inspired from the Thayananthan method
(Thayananthan et al., 2003).

Each ellipse e - which is a projection of one
particle - is given a likelihood p(z, e) that depends
on the average of skin color probabilities around
the template corresponding to e. The pixels in the
image are partitioned into a set of object pixels O,
and a set of background pixels B. Assuming pixel-
wise independence, the likelihood can be factored
as

p(z, e) =
∏

o∈O

(p(Ps(o), e)) ×
∏

b∈B

(1 − p(Ps(b), e))

where Ps(k) is the skin color probability at pixel
location k.

The likelihood of the particle x is given by the
merge of the two corresponding projected ellipses
likelihood.

3.1.2. Importance function The importance func-
tion π(.) is defined by a Gaussian mixture from the
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Fig. 1. The Jido robot (a) and its software modular architecture (b).

triangulated 3D skin blobs. Let N be the number
of detected 3D skin blobs and

bi = (xi, yi, zi, axi, ayi, azi, θi, φi, ψi), i ∈ {1..N}

the ellipsoid descriptions corresponding to each
such region. An importance function π(.) at lo-
cation x = (x, y, z, ax, ay, az, θ, φ, ψ) follows, as
the Gaussian mixture proposal

π(x, z) =

N
∑

i=1

1

N
N (x|bi,∆).

3.2 The ICU module

This module aims to track human upper-body
(torso and head) in the video stream in order for
the robot to be sure that it can interact with the
person in front of it (recognition of its tutors) and
to be able to follow somebody. The ICU module
is composed of three main parts : (i) the face
detector to found all faces in the video, (ii) the
face recognition and (iii) the human upper-body
tracker.

3.2.1. User face detector This detector is based
on the well-known window scanning technique in-
troduced in (Viola and Jones, 2001). This classi-
fier covers a range of ±45◦ out-of-plane rotation
of the user’s face. It is used to switch between
different modalities, but also to feed the face
recognition part of the module.

3.2.2. User face recognition This part is based
on the eigenface as described in (Turk and Pent-
land, 1991). It aims to classify facial regions F
segmented from the face detector into either one
class Ct out of the set {Ct}1≤t≤M of M tutors of
the robot. Each new detected face F(j), written
as a nm × 1 vector, is reconstructed in Fr,t by

projecting it into B(Ct). F is linked to the class
Ct by its error norm:

D(Ct|F) =
1

n×m

n×m
∑

j=1

((F(j) −Fr,t(j)) − µ)2,

where F −Fr,t is the difference image, given that
|F − Fr,t| terms the DFFS 1 , and µ the mean of
F − Fr,t, and its associated likelihood

L (Ct|F) = N (D(Ct|F); 0, σt)

where σt terms the standard deviation of distances
of B(Ct) training set.

The aforementioned likelihood L have to be
thresholded in order to match the input face
F with an already learned individual Ct. This
threshold τ is deduced by computing likelihoods
L between test image database with their own
class Ct but also with the other classes noted ¬Ct.

Moreover, we investigated in preprocessing meth-
ods (Heseltine et al., 2002) to improve the recog-
nition accuracy. ROC curves have been gener-
ate from a database of 6000 faces to select the
most meaningful image preprocessing. Histogram
equalization is shown to outperform the other
techniques for our database.

For a set of M learned tutors (classes) noted
{Ct}1≤t≤M and a detected face F , we can define
for each class Ct, the likelihood Lt = L (F , Ct)
and an a priori probability P (Ct|F) of labeling to
Ct






P (C∅|F) = 1 and ∀l P (Ct|F) = 0 when ∀l Lt < τ

P (C∅|F) = 0 and ∀l P (Ct|F) =
L (Ct|F)

∑

p

L (Cp|F)
otherwise

where C∅ refers the void class.

3.2.3. User Tracking The tracking part is based
on the I-Condensation algorithm also used in

1 Distance From Face Space



Gest. The followed template is fit with its location
[uk, vk]

′

, and its scale sk, so that xk = [uk, vk, sk].
In our human upper-body tracker, we consider
multi-patches of distinct color distribution related
to the head and the torso (Figure 2).

Moreover, taking into account the recognition
step, the importance function related to the
tracked class Cl becomes, with bj the centroid
of the jth extracted face

π(x
(i)
k |zk) =

NB
∑

j=1

P (Cl|Fj).N (bj |X̄B,ΣB),

Fig. 2. The
template.

where vector X̄B and matrix
ΣB, which respectively term the
mean and covariance of the off-
set from the ROI position to
the centroid of the associated
contour describing the face, are
learned off-line.

3.3 The HumPos module

Evolved from work to develop experiments that
are explained in (Sisbot et al., 2006), the HumPos
module, mainly based on laser data, detects el-
ements that could be human legs. This module
provides detection and tracking functionalities.
The detection phase is divided in three stages: the
first two stages are in charge of detecting legs by
laser data and the last one is the correspondence
with data obtained from ICU module (Figure 3).

Fig. 3. The inner workings of Human Detection module,
HumPos.

3.3.1. Detection At the first stage of the human
detection, HumPos filters dynamic segments cre-
ated from laser data (the ones which are not in the
environment map) and, among them, keeps the
ones which have a given size, form and proximity
that could be considered as a leg. Once all legs
are formed, pairs of legs are coupled. Each couple
forms an item which will be included in the base
list for human detection. It will be used in the
second stage of the detection process.

In the second stage, HumPos creates blobs from a
neighborhood of points obtained from raw laser
data. Each of these blobs could represent legs
depending on the quantity of points and on their
distance from the laser sensor. Similar work is
explained in (Xavier et al., 2005) to detect cylin-
der and lines to find legs by analyzing their geo-
metrical characteristics. As in the first step, legs
are coupled and a list of items is obtained from
this stage. This list is compared with the first list
obtained in the previous stage and matched items
increase their certainty.

Finally in this phase, at the third stage, a list
of detected faces and position estimation ob-
tained from the ICU module is compared with
this list. This phase increases dramatically the
confidence of matched items to be humans. In
(Kleinehagenbrock et al., 2002), a similar work
is conducted by combining camera and laser to
track people. The main difference resides in the
camera system from the fact that it only detects
faces to ensure the presence of human but does not
estimate its real position in the space, obstructing
in this manner multi-tracking.

3.3.2. Tracking In (Shulz et al., 2001) or (Baba
and Chatila, 2006), a particle filter dedicated
to moving objects tracking with a laser scan
is applied with good results, but we needed a
lighter and simpler way to track items in order to
satisfy real time constraints. In our case, we use
a classical Kalman filter which takes in account
multi dynamic hypotheses.

3.4 The Voodoo module

The Voodoo module is in charge of 3D human
body tracking. It uses the swissranger device,
which provides a 3D data point cloud of the scene.
178 × 144 depth images are acquired at 25 Hz.

The processing loop involves an Iterative Closest
Point based algorithm which best fits a human
model with the 3D data acquired from the swis-
sranger camera. The model is constituted of 10
limbs, each of which is represented with a degener-
ated cylinder. The joints are modeled using some
kind of “elastic bands” between limbs resulting
in a 3 type classification: a universal joint with 3
DOF; a hinge joint with 1 DOF and 2 restricted
DOF and finally an “elliptical joint” with 3 re-
stricted joints. The curious reader can find a more
complete description in (Knoop et al., 2006).

The tracking can be initialized with the human
position provided by the HumPos module. The
initialization configuration is always supposed to
be a standard one, that is to say human facing
the camera with arms slightly moved aside from



the body. The module can also integrate partially
complete data about human pose from various
sensor types, e.g. head or hand positions given by
Gest or ICU modules.

4. RESULTS

4.1 Scenario

The main aim of the demonstration is to show a
robot giving an object to a person. The object is
supposed to be already grasped when the human
arrives. This scenario is run under the control of a
joint intention theory based supervisor described
in (Clodic et al., 2005).

The robot is navigating in an indoor environment.
The person who wants to interact with the robot
presents herself in front of it. The laser sensor
is running and the HumPos module can thus
detect a human presence at a high range distance.
If someone is detected, the robot waits for the
human to stop.

The Voodoo module is then initialized with data
from HumPos and can track human body move-
ments, in order to recognize some kind of inter-
action acceptation gesture from the human for
example. Meanwhile, the ICU module tracks the
global body position with the camera mounted
on the pan-tilt unit. If face detections occur, they
are compared to the tutor database. If the person
standing in front of the robot belongs to learned
tutors, the robot approaches and then the Gest
module is launched. Human hands are tracked
thanks to the stereo bank on the pan-tilt unit and
their position is provided to modules in charge of
the arm control to give an object to the human.

4.2 Experiments

The Gest module processes data at 5 Hz. This is
enough to allow the tracked person to have natural
movements. The precision of the hand position
in depth lies between 10 and 20 cm, while the
precision in x and y (width and height) is the
cm. The lack of precision in depth is due to the
proximity of the stereo cameras.

The integration of skin blobs segmentation on
board of our JIDO robot, showed that its behavior
is greatly influenced by the viewing condition
changes in such a mobile robot context. Skin blobs
segmentation must be used cautiously and should
be coupled with other detection methods.

Snapshots of a typical sequence is shown on fig-
ure 4.

The ICU module works between 10 and 15 Hz.
It can easily detect face from 1m to 4.5m so, the

Fig. 4. Hand being tracked by the Gest module : the
ellipses are the projection of the 3D state vector

tracker can work in this range of distance, even
if the closer one can cause some difficulties due
to the absence of the torso of the target. Figure
5 shows some snapshots of recognized tutors’
faces where the detector marked – in red color
– the detected faces but only those in green color
are recognized from the previously learned faces,
while Figure 6 involves occlusion of the target
by another person crossing the field of view. The
combination of multiple cues based likelihood and
face recognition allows to keep track of the region
of interest even after a complete occlusion.

Fig. 5. Snapshots of detected/recognized faces with as-
sociated probabilities. The target is Sylvain (resp.

Thierry) for the first (resp. last) frame.

Fig. 6. Tracking scenario involving full occlusions between
persons. Target recovery.

The Voodoo module processes data at 10 Hz on
our robot software architecture, even if visualiza-
tion is a bit slower. The tracker is efficient at a
middle range distance. If the tracked person is
too close, legs can possibly be out of the sensor
field of view, what does not affect the accuracy
of the upper body tracking. A screenshot of body
configuration estimation is presented on figure 7.

Fig. 7. The Voodoo module interface (background) show-
ing the 3D body model estimated configuration with
respect to the real scene (bottom right).



Fig. 8. The Jido robot environment representation (left)
and the real human position (right).

The HumPos module processes data at 5 Hz.
Thanks to laser data, the robot can localize itself
and detect people in its environment (Figure 8).

5. CONCLUSION AND PERSPECTIVES

We have shown in this paper the result of an
implementation of human perception algorithms
on a robot. Different modalities are set up to
localize and track the human at a wide range
of distances. Face recognition is also performed
to make the robot obey to offline learned tutors.
These human perception abilities are used to give
an object from the robot to the human.

Nevertheless, robustness can still be improved on
some modules independently. We also plan to
fuse more datas, for example e.g., hand position
tracked by the Gest module could be used to guide
the Voodoo body tracker.Generally speaking, data
fusion seems to be the key step in a robust human
perception.

Some videos presenting parts of the scenario
can be found at www.laas.fr/∼mfontmar and
www.laas.fr/∼tgerma.
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