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ABSTRACT

In this article we present a two ambiance video camera system
dedicated to markerless human motion capture. We introduce
a new particle filter algorithm which entails an importance
function enabling auto-(re)initialisation, and takes account of
the global curvature of the likelihood so as to guide the search
along poorly observable directions of the state space. The
system robustness is improved by fusing different visual cues.
Performances are nearly real time.

Index Terms— visual tracking, human motion, particle
filtering, data fusion

1. INTRODUCTION

The applications of Human Motion Capture are many,e.g.
movie industry, video games, sport movement analysis, or, in
our context, communication with instrumented environments
or robots. Our purpose is to perform real time markerless hu-
man body tracking in indoor environments with a standard
fire-wire camera system. The system does not need to be as
precise as a commercial motion capture system, but must be
robust to experimental conditions and able to recover from
tracking failures. This raises several problems: (1) if we want
to be as generic as possible, we cannot make any hypothe-
sis on human appearance; (2) human models often present
more than20 degrees of freedom (DOF), which implies a
huge state space, hard to explore in real time even with re-
cent techniques; (3) likelihood functions show a lot of local
minima which can “trap” optimization algorithms; (4) auto-
(re)initialization capabilities are needed.

Much work has been done to propose efficient schemes
suited to such high dimension spaces. The partitioned sam-
pling technique [1] splits the state vector into sub-vectors
which evolution and likelihood depend only on the sub-
vectors of lower indices. The annealed particle filter of [2]
entails simulated annealing arguments so as to iterativelyex-
plore the state space by sharpening the particle cloud towards
likely areas. Covariance scaled sampling [3] estimates the
particle cloud mode covariances at each time step in order to
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sample along the most uncertain directions; then it drives each
sample towards local minima of the negative log-likelihood
by local optimization. Partitioned annealed particle filter
[4] incorporates this covariance sampling technique in the
classical annealed particle filter.

Our filtering strategy is based on the latest one to which
we add an importance sampling stage. This involves being
able to infer a coarse3D configuration of the human body
model from the images. We also introduce Quasi Monte Carlo
(QMC) sampling which has been proved superior in terms of
convergence than classical Monte Carlo sampling [5].

Section 2 presents our approach of the human tracking
problem and describes our filtering strategy. The measures it
exploits are explained in section 3. Our experimental system
configuration is described in section 4 together with some re-
sults. Then we conclude our work and propose some future
research axes in section 5.

2. FILTERING SCHEME

As expected, we formulate the tracking problem as the
Bayesian state estimation of a Markovian stochastic process.
The human body configuration parameters to be estimated
at time k constitute the hidden state vectorxk of a system
which delivers the measurements —images—zk. This sys-
tem is characterized by its state dynamicsp(xk|xk−1) —here
a random walk— and the conditional probabilityp(zk|xk)
of the output given the state vector, which also defines the
likelihood of the state w.r.t. the measurement.

In high dimension state space problems, the key to effi-
ciency is the ability of focusing samples in regions of high
likelihood. This is why an importance function is needed to
guide the particle sampling.

The algorithm we propose is rooted in the Annealed Par-
ticle Filter of Deutscheret al. [2] and the Covariance Scaled
Sampling of Sminchisescuet al. [6] on which we add an im-
portance sampling stage to enable auto-(re)initialization. It is
presented in table 1. The main idea is to split the process-
ing step in two stages. The first one introduces importance
sampling as in the ICONDENSATION [7]. The second one
sharpens the exploration of the state space using covariance
sampling. Furthermore, we introduce QMC sampling which
can produce low-discrepancy samples. This avoids the “gaps
and clusters” which are likely to occur when sampling in high



dimension spaces.
This algorithm can be seen as an evolution of the I-

Annealed Particle Filter with only2 stages [8]. Using such
a simplified scheme provides the advantage of being freed
from the use ofα andβ exponents which are very difficult
to tune in practice. Recall that the goal here is not accuracy,
but rather to be able to maintain a limited-size particle cloud
which explores smartly enough the state space.
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Table 1. Particle filter algorithm

3. MEASURES

The importance functionq(xk|xk−1, zk) generally involves
discriminant but possibly intermittent visual cues — due to
occlusions or mis-segmentation in our case — while measure-
ment functionsp(zk|xk) involve cues which are persistent yet
proner to ambiguity for cluttered scenes [9]. Fusing several
cues confers robustness w.r.t. temporary failures in some of
the measurement processes. The next subsections describe
our importance function followed by our multiple cues based
measurement function.

3.1. Importance function

We sampleα percent of the particles according to the dy-
namics,β percent according to the measure and the last ones
according to a priorp(x0). The particles sampled from the
measure are drawn from a multi-Gaussian distribution which
modes are centered on configurationsx

D(i)
k , i ∈ 1..N3D com-

puted from 3D possible positions of head and hands thanks to
an analytical Inverse-Kinematics (IK) algorithm. To obtain

3D position of head and hands, we apply a skin color seg-
mentation on each image, then triangulate the detected2D
blobs to get3D blobs. Thus, the hands and the head can be
understood as three natural markers.

Samplingx according toq(xk|xk−1, zk) is then analo-
gous to drawingu ∼ U(0, 1) and then sampling:

• x ∼ p(xk|xk−1) if u < α

• x ∼
∑N3D

i=1
1

N3D
N (x

D(i)
k ,∆k) if α ≤ u < α + β

• x ∼ N (x0,∆k) if u ≥ α + β

where∆k is a covariance matrix. In our context, it is the same
matrix as the system dynamics covariance.

3.2. Likelihood function

The following measurements are assumed mutually indepen-
dent conditioned on the state, so that the global measurement
function factorizes as :

p(zk|xk) = p(zs1
k , zs2

k |xk) = p(zs1
k |xk)p(zs2

k |xk).

They are based on the use of a segmented silhouette image
Is obtained with background subtraction. Each measure is
evaluated in both images.

3.2.1. Silhouette distance

This likelihood requires the projection of the 3D model.Np

pointspi, i ∈ {1, . . . , Np} are sampled from the silhouette
corresponding to the projection of the configurationxk. The
silhouette distance is then defined by

p(zs1
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wherei indexes theNp model points,Is(pi) is the associated
value in the segmented image, andσs the a priori standard
deviation of our Gaussian measure model.

3.2.2. Dual Silhouette distance

This measure is the dual of the one above. We sampleNs

pointspj from the segmented imageIs. For each configura-
tion xk the dual silhouette distance is defined by

p(zs2
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(1 − f(pj , xk)),

wheref(pj , xk) = 1 if the pointpj is in the silhouette corre-
sponding to the projection ofxk, 0 otherwise.

We sometimes also use other likelihood functions (based
on a skin color distance image, on motion or on collision com-
putation) but they are not described here by lack of space.



Fig. 1. Comparison between our tracker (bottom) and an annealed particle filter (top).

Name Description Value
(W, H) Image size (640, 480)

N Number of particles 400
(σs1, σs2) Likelihood parameters (0.2, 0.4)

λ Covariance sampling factor from2 to 5
p(xk|xk−1) Dynamics N (xk−1, ∆k)

∆k Gaussian dynamics covariance diag(δ1..δNDOF
)

δi Scalar variance ofith DOF 0.07 if translation0.1 if rotation

Table 2. Parameter values used in the trackers

4. EXPERIMENTS AND RESULTS

4.1. Experimental Setup

The system uses two fire-wire ambiance mono CCD color
cameras. We acquire1024 × 768 bayerised images. They
are first converted to RGB, then downsampled to640 × 480,
prior to performing a white balance. We use a22-DOF tem-
plate built with truncated cones, even if the visualizationof
the configuration is done using a meshed model. On some
video sequences, we can reduce the complexity of this model
by taking into account only the14 DOF of the upper body
part.

The filtering strategies we compare involve a number of
particles so that they all process one frame within the same
time. The aim is to assess the tracking properties for a given
computation power.

4.2. Results

4.2.1. Efficiency

By introducing a covariance scaled QMC sampling along the
directions of lowest observability, less particles are needed to
perform an efficient tracking as they are focused in pertinent
areas of the state space. This also reduces the variance of the
estimate along consecutive trials. Figure 1 shows a compar-

ison between our filtering strategy and the annealed particle
filter on the same video sequence. We can see that our algo-
rithm provides estimates as good as the annealed particle filter
and —in some tricky cases— slightly better ones (one can no-
tice the last sequence image where the right hand is confused
with the head).

4.2.2. Robustness

The main advantage of our particle filter in our high dimen-
sion state space tracking context is its ability to initialize or
re-initialize automatically — and so aid recovery from tran-
sient tracking failures —. This makes the classical manual
initialization unnecessary, as a detection of head and hands is
enough to induce a3D configuration of the model. A short
sequence showing the tracker (re-)initialization is presented
on fig 2. In these sequence, no prior draw is used.

4.2.3. Material considerations

Our algorithm has a complexityO(N) whereN is the num-
ber of particles, what is absolutely necessary in a real time
context. In its actual form, it runs on640 × 480 pixel im-
ages at about1 Hz. Most of the time consumption — about
200 ms — is spent in image processing and preprocessing
(conversion from Bayer to RGB, skin probability computa-
tions, blob segmentation, . . . ), and we hope to optimize this
step. Furthermore, we could speed up the tracking by reduc-
ing the image size. A few parameter values used for the main
sequences presented here are shown in table 2. Most of them
have been set up by experimenting different values, some-
times guided by simple heuristics. More videos are visible at
the URLwww.laas.fr/∼mfontmar.



Fig. 2. From left to right and from top to down : the tracker is
initialized with a default configuration which does not make
sense with regard to the real state. Head and hands detections
enable to build a basic configuration near from the real one to
initialize the particle cloud : the initialization succeeds.

5. CONCLUSION

We have set up a system performing human body tracking
from two ambiance cameras. A new algorithm has been pro-
posed, mixing advantages of the well-known Annealed and
Covariance Scaled Sampling strategies, introducing an im-
portance sampling stage, and enabling auto-re(initialization).
This algorithm is built on a QMC low-discrepancy sampling
of the state space. As it is built in a particle filter framework,
data fusion from heterogeneous sensors is easy and theoreti-
cally sound. The tracking system is independent of the human
clothes and runs close to real-time.

While our results are promising, a detailed comparison
between our filter and those of the literature would be inter-
esting in a context where accuracy is important. For more
precision, we plan to extend our filtering strategy by using
Gaussian mixture to approximate the posterior which could
be more justified than a simple Gaussian (even if this is a key
step to pass through). However such an approach raises the
problem of the algorithm complexity which is always critical
in real-time systems. We will also try to incorporate the use
of the IK in the2nd step of the filter to sharpen, once again,
the state space exploration.

Future work could also be focused on mixing data from
3D time-of-flight sensors [10] with classical color camera im-
ages. This could provide more stable localisation information
as blob triangulation is not always reliable. Efforts can still
be done to increase the frame rate of the tracking, by exploit-
ing more efficiently the measurements — building a3D voxel
model of the scene for instance.
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