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ABSTRACT

Visual Human Motion Capture (HMC) is a motivating chal-
lenge in the Computer Vision community as it enables lots
of applications. Many methods have been proposed among
which Particle Filters (PF) meet a great success. In this pa-
per, we propose a new algorithm, mixing advantages of the
PARTITIONED scheme and quasi random methods. We use
a trinocular visual system to propose a comparative study of
this particle filter against four other classical ones with respect
to a ground truth provided by a commercial HMC system.

Index Terms— Motion capture, trinocular system, parti-
cle filters, quasi random sampling.

1. INTRODUCTION

The visual based HMC from multi-camera video data and ad-
vanced appearance-based approaches has improved in the last
decade [2]. The global principle is to infer the configuration
of a coarse 3D human kinematic model from its projection
in monocular [3] or multi-ocular [4, 5, 6] image sequences.
Such a principle enables to derive abundant appearance infor-
mation from the image contents, especially with multi-view
systems which are prone to estimate motion-in-depth more
accurately and reliably. Regarding the estimation process, the
particle filtering framework [7], first introduced for visual
tracking in the form of the CONDENSATION algorithm [8],
has proved well suited for HMC application. The key idea is
to represent the posterior distribution by a set of samples—
or particles—with associated importance weights. This par-
ticle set is recursively updated over time taking into account
the visual data and the observation model. PFs make no re-
strictive assumption on the probability distributions entailed
in the characterization of the problem, and permit a proba-
bilistic principled fusion of diverse kinds of measurements.
However, the main drawback for particle filters remains the
high computational cost with regard to the state-space dimen-
sionality. This still prevents real-time human motion capture
from becoming a reality.

In this paper, we thus propose an original tracking frame-
work especially designed to be more efficient than other ones

for a low number of particles. Section2 briefly presents the
particle filter formalism and introduces our PARTITIONED
QRS PF. Our system setup is then described in section3, in-
cluding human body model and likelihood function design.
Section4 exposes quantitative evaluations of our method with
regard to four other strategies on various motion capture se-
quences. Finally, section5 summarizes our contributions and
discusses future works.

2. THE QRS PARTITIONED PARTICLE FILTER

2.1. Basics

In a stochastic Bayesian filtering approach to appearance-
based motion capture, the 3D template situation and con-
figuration parameters to be estimated are first incorporated
in a state vectorxk, whose (given) initial probability den-
sity function (pdf) and prior dynamics write asp0(x0)
and p(xk|xk−1). At any timek, the available visual data,
symbolized byzk, is related toxk by the observation den-
sity p(zk|xk). Due to the high number of degrees of freedom
(DOF) of the underlying articulated 3D model and to the
difficulty to assess its projection onto the current images,
the posterior pdfp(xk|z1:k) to be estimated is multimodal,
defined in an high-dimensional state space, and unavail-
able in closed-form. A point-mass (or particle) approxima-
tion p(xk|z1:k) ≈
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is then recursively propagated along time through sequential
Monte Carlo estimation methods [7, 8]. An approxima-
tion of the minimum mean-square error estimate (MMSEE)
E(xk|z1:k) follows.

The celebrated “Sampling Importance Resampling” (SIR)
algorithm [7] operates in three major steps. First, the particles
x
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, i = 1..N are propagated in the state space through an

importance functionq(xk|x
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explore relevant areas of the state space. Then, the weights
w
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are updated to ensure the consistency of the point-mass
approximation taking into account the observation density.
Last, when approximation tends to be degenerated, a resam-
pling stage is inserted. Importantly, the SIR framework en-
compasses the CONDENSATION [8] as well as importance



sampling from the current images.

2.2. PARTITIONED particle filter

Contrarily to a common belief, the computation time of a par-
ticle filter for general problems, though linear in the num-
ber of particles, is exponential in the system order for a fixed
dimension-free error [9]. To lower this complexity, many al-
gorithms have been proposed. When the system dynamics
comes as the sequence ofM partial evolutionspm(xm

k
|xm−1

k
)

of the state vectorxm

k
at stepm and when intermediate likeli-

hoodslm(xm

k
|zk),m = 1..M, can be assessed after applying

each partial dynamics, PARTITIONED schemes apply [1].
From a succession of sampling operations followed by re-

sampling based on the intermediate likelihoods, the particle
cloud can be successively refined towards areas of the state
space in which the posterior is dense. The computational
complexity then becomes linear in the number of partitions.

2.3. Quasi Monte Carlo filtering methods

Pure random importance sampling leads to “gaps and clus-
ters” in the particle support, especially in high-dimension
spaces. An excessive Monte Carlo variation of the predic-
tions can follow, making the filter unreliable or even leading
to failures. Substituting the random particles by a determinis-
tic or randomized low-discrepancy—or “Quasi Monte Carlo”
(QMC)—sequence can lead to a better convergence rate w.r.t.
the number of particlesN [10], while lowering the root mean
square (RMS) estimation error and leading to a variability
reduction from 5% to 20% [11, 12].

Among the main issues on QMC filters are the difficulty to
design low-discrepancy sequences in spite of the resampling
steps, the exploitation of the current measurement in the defi-
nition of these sequences, and the possible trade-off between
the reduction of the (quadratic) complexity and the mathe-
matical soundness of the algorithms. A QMC counterpart of
CONDENSATION, henceforth termed QRS (for Quasi Ran-
dom Sampling), is proposed in [13]. We adapted this idea
to the PARTITIONED filter proposed in [1]. The final algo-
rithm is described Table1. The key idea here is to gather
propagating and resampling steps. This enables to generate
low discrepancy samples from a particle to be resampled, thus
resulting in a more regular state space exploration.

3. TRACKER IMPLEMENTATION

3.1. Human body model

Our appearance-based approach infers the human body model
from its projection in trinocular image sequences. The whole
human body model is fleshed out using truncated cones with
fixed dimensions. These geometric primitives are easily han-
dled and hidden part removal can be obtained in closed form.
The model is based on a kinematic tree consisting of nine
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Table 1. PARTITIONED QRS: partitioned particle filter ex-
ploiting QMC techniques.

body segments and22 DOF. We assume Gaussian random
walk dynamics.

3.2. Observation likelihoods

It can be argued [4, 14] that appearance-based cues constitute
a principled way to derive plethora of measurements, thus of-
fering a nice trade-off in terms of generality, simplicity,and
complementarity. Our tracker implementation relies on3 vi-
sual cues involved in the likelihood definitionp(zk|xk):

Silhouette-based likelihood -In the vein of [4], we first
perform a foreground-background silhouette segmentationin
order to obtain the silhouette mask. We sample points inside
the limbs of each projected particle to check whether or not
the limbs are consistent with the segmented silhouette.

Dual silhouette-based likelihood -In order to complete
this first cue, we counterbalance it by the one proposed in [3].
The principle is symmetric, consisting in sampling the seg-
mented silhouette and check its consistency w.r.t. the current
projected particle.

Skin blob-based likelihood - To improve localization
accuracy—especially for thin limbs such as arms—, we set
up an additional likelihood function involving skin blob de-
tection. For each projected particle, we compute the distance
between head and hands and the nearest detected skin blob.
The best configurations w.r.t. this cue are the ones showing
the lowest distances.



Fig. 1. Snapshots from 2 sequences: walking and gym movement (top), and walking and reading with a different subject
(bottom). Only one of the three images is shown due to space limitation.

3.3. System setup

Our vision-based HMC system involves three IEEE 1394
“progressive scan” Flea 2 color cameras providing640× 480
images. We set up the system in a4 × 3 m working area in
an indoor environment surveillance context. Some represen-
tative results are shown in figure1. We only show images
from one of the3 cameras due to space reasons, what can
be somehow misleading about filter accuracy and movement
complexity. For a more complete overview, the entire videos
can be found at the URL:www.laas/∼mfontmar.

Generally speaking, we notice that tracking is correct as
soon as a good segmentation of the silhouette is performed,
which confirms the results of [15]. However, as we exploit
skin segmentation, performances are damaged when the sub-
ject does not present hands or face on at least one camera.
The results obtained with PARTITIONED QRS strategy are
visually more stable than to the ones obtained with APF [4].
However, comparing performances in a qualitative way is not
always an easy task, as the projection of the template in the
image can be forked. This is why we propose in the next sec-
tion a quantitative study of our algorithm.

4. PARTICLE FILTER EVALUATIONS

4.1. Evaluation setup

Ground truth positions of the template joints are given by a
commercial HMC system from Motion Analysis [16]. It is
software calibrated and synchronized with our own trinocular
visual tracking system. In order to analyze the average behav-
ior of the filters,30 runs are performed on each set of data. As
we tend to set up a nearly real-time system, evaluations are
done limitingN to 100..2000. We assess the performance on
various sequences of∼ 20 s including walking, arm waving,
pointing, and fitness. Trackers are initialized by hand.

Fig. 2. RMS error (left) and estimator dispersion (right) of
the filters for a varying number of particles.

Name RMSE Dispersion Failure Bias
CONDENSATION 5 5 5 5

QRS 4 4 4 4
PARTITIONED 3 2 3 3

PARTITIONED QRS 1 1 1 2
APF 2 3 2 1

Table 2. Sorting of the different PF according to each criteria.

4.2. Filter comparison

In this section, we present a comparison of our PARTI-
TIONED QRS strategy with CONDENSATION [8], QRS
[13], APF [4] and PARTITIONED [1] algorithms. All strate-
gies are normalized with respect to the number of likelihood
evaluations which is the most time consuming part. APF is
used with3 layers in order to achieve the minimum number of
particles to be efficient [4], and free parameters are tuned fol-
lowing recommendations in [4]. PARTITIONED strategies
involve2 partitions: one for torso position and configuration,
and one for member configuration. A summary of the results
is proposed in table2, relatively to the following criteria:

Accuracy - Figure2 (a) presents the average global RMS
error of the estimated joint positions with respect to ground
truth, computed over all frames and filter runs. All trackers
are globally efficient. Errors are reasonable considering our
rough models of the human body, the simple measures and



our nearly real-time context. Looking at the relative perfor-
mances, we can notice that advanced strategies perform bet-
ter than the classical CONDENSATION, however APF is less
efficient than PARTITIONED QRS for a low number of par-
ticles. According to [4], APF needs a minimum number of
particles per layer to be efficient. Generally speaking, QMC
methods provide better estimates than their MC counterparts.
For a same given error they can lead to a20 % reduction of
the number of particles in the best case, which can constitute
an important gain in computing time.

Dispersion -Figure2 (b) presents the variance of the es-
timated configuration over all frames and filter runs. PARTI-
TIONED schemes present the lowest dispersion. QMC ver-
sions of the filters tend to provide a more “stable” estimate
than the classical MC ones due to their low discrepancy sam-
pling, even considering our simplified versions designed to
match anO(n) complexity. This seldom exploited criterion
reveals that our PARTITIONED QRS methods seems to pro-
vide the best results in terms of dispersion, even for a high
number of particles. It can improve the dispersion of3 cm

per joint in friendly cases, which constitutes a significanten-
hancement.

Failure and Bias - These two criteria are not shown in
a figure due to lack of space. The failure rate is computed
by counting each time one estimated joint position presents
an error w.r.t. the ground truth higher than a given threshold.
It is fairly consistent with RMSE and dispersion observations.
The bias represents the distance between the average joint po-
sitions over filter runs and the groundtruth joint positions. It
is slightly lower for APF as soon asN > 1000 in our con-
text. Under this threshold, PARTITIONED schemes and APF
present practically identical results.

Our system actually performs in1 fps on a Pentium IV
3 GHz while any vision-based approach using particle filter-
ing is far from real time: 0.02 fps in [15], 0.03 fps in [5],
0.07 in [4],. . . To sum up, it comes out that PARTITIONED
QRS provides a better accuracy than the APF for a low num-
ber of particles, while proposing the lowest dispersion of the
estimates among the five tested PFs. Thus, it can constitute
a good alternative for systems with strong time computation
constraints.

5. CONCLUSION AND FUTURE WORK

We proposed a new hybrid PARTITIONED QRS PF marker-
less HMC which we assessed with regard to four other strate-
gies. Advanced filtering techniques provide better resultsfor
the same visual cues, nevertheless PARTITIONED QRS out-
performs all other algorithms for a low number of particles.
Additionally, it leads to the lowest dispersion of the estimates.
This definitely makes it well-suited for real-time applications
where computational power is limited. A nearly real-time ap-
plicative system is proposed in a human cluttered environ-

ment to complete the study on several subjects, showing that
reactive visual HMC systems seem within reach.

Some interesting future lines of investigation from this
work could involve more advanced visual cues, as the ones
chosen here are fairly classical. In addition, and to complete
this study, one should also take into account importance sam-
pling methods which enable automatic initialization, in order
to propose a fully automatic system.
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