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ABSTRACT for a low number of particles. Sectighbriefly presents the

Visual H Motion Cant HMC) i ivati hal particle filter formalism and introduces our PARTITIONED
isual Human Motion Capture ( ) is a motivating chal- QRS PF. Our system setup is then described in sefion

Iefnge Il'n tT_e Con;/ﬁ)uter V|s£|r:)ndcohmmurt;|ty as it enab(;es Iotscluding human body model and likelihood function design.
ot applications.  Viany metnods have been proposed amongy, .,y exposes quantitative evaluations of our method with

which Particle Filters (PF) meet a great success. In this pa}Eagard to four other strategies on various motion captwe se

per, we propose a new algorithm, mixing advantages of th uences. Finall . . o
k . y, sectionsummarizes our contributions and
PARTITIONED scheme and quasi random methods. We usgiSCusses future works.

a trinocular visual system to propose a comparative study o
this particle filter against four other classical ones wibpect

to a ground truth provided by a commercial HMC system. 2. THE QRS PARTITIONED PARTICLE FILTER

Index Terms— Motion capture, trinocular system, parti- _
cle filters, quasi random sampling. 2.1. Basics

In a stochastic Bayesian filtering approach to appearance-
1. INTRODUCTION based motion capture, the 3D template situation and con-
figuration parameters to be estimated are first incorporated
The visual based HMC from multi-camera video data and adin a state vectox;, whose (given) initial probability den-
vanced appearance-based approaches has improved intthe ity function (pdf) and prior dynamics write agy(xo)
decade J]. The global principle is to infer the configuration and p(xx|xx—1). At any timek, the available visual data,
of a coarse 3D human kinematic model from its projectionsymbolized byz;, is related tox; by the observation den-
in monocular B] or multi-ocular {, 5, 6] image sequences. Sity p(zx|x;). Due to the high number of degrees of freedom
Such a principle enables to derive abundant appearanae infd DOF) of the underlying articulated 3D model and to the
mation from the image contents, especially with multi-viewdifficulty to assess its projection onto the current images,
systems which are prone to estimate motion-in-depth morthe posterior pdf(x;|z;.x) to be estimated is multimodal,
accurately and reliably. Regarding the estimation proghss defined in an high-dimensional state space, and unavail-
particle filtering framework 7], first introduced for visual able in closed-form. A point-mass (or particle) approxima-
tracking in the form of the CONDENSATION algorithm]}  tion p(xx|z1) & SN wi’6(x; —x\7), SN w’ =1
has proved well suited for HMC application. The key idea isis then recursively propagated along time through seqalenti
to represent the posterior distribution by a set of samples—Monte Carlo estimation method<,[S]. An approxima-
or particles—with associated importance weights. This partion of the minimum mean-square error estimate (MMSEE)
ticle set is recursively updated over time taking into actou E(xy|z;.;) follows.
the visual data and the observation model. PFs make no re- The celebrated “Sampling Importance Resampling” (SIR)
strictive assumption on the probability distributionsaéletd  algorithm [7] operates in three major steps. First, the particles

in the characterization of the problem, and permit a proba)-(l(:), i = 1..N are propagated in the state space through an

bilistic principled fusion of diverse kinds of measurensent . . ) .

. . ' . importance functiory(xy|x,”,zx), selected to adaptively

However, the main drawback for particle filters remains the g

. . . . “explore relevant areas of the state space. Then, the weights
high computational cost with regard to the state-spacemtime ",

sionality. This still prevents real-time human motion eapt ~ “» are updated tg ensure the consistency of th? point—m_ass
from becoming a reality approximation taking into account the observation density

Last, when approximation tends to be degenerated, a resam-
In this paper, we thus propose an original tracking framepling stage is inserted. Importantly, the SIR framework en-
work especially designed to be more efficient than other onesompasses the CONDENSATION][as well as importance



sampling from the current images. {7, wi}X, = PARTITIONEDQRS({(x} ,w” )}, zx)

2.2. PARTITIONED particle filter 1. IF k = 0, THEN Sample a uniform randomized Sobol QMC

i lef th o " sequencen” ..., u™ then turn it intox{", ... x{"’
Contrarily to a common belief, the computation time of a par- polxo) - Setw® — L. END IF

ticle filter for ge_neral problgm_s, though linear in the num- 5. \F 1 > 1 THEN
ber of particles, is exponential in the system order for adfixe 3. setr(" = 4(?  andx?® =x{?  i=1.N

~

L
N-

dimension-free errord]. To lower this complexity, many al- 4  FORm = 1..M, DO g P

gorithms have been proposed. When the system dynamics: Independently draws™ ..., s®™) into 1..N such that

comes as the sequenceMdfpartial evolutions,,, (x}*[x;" ) P(s® = j) =79 - SetC; = card({i|]s®) = j})

of the state vectax;* at stepm and when intermediate likeli-  6: FOR j =1..N,DO

hoodsl,,, (x}"|zx), m = 1..M, can be assessed after applying 7: Sample a uniform randomized Sobol QMC

each partial dynamics, PARTITIONED schemes apply [ sequence u(l),uwu(cj)_ilthen turn it into
From a succession of sampling operations followed by re- x (= G e (Sie @G g according

sampling based on the intermediate likelihoods, the partic topm(xmxg—l*(ﬂ'))

cloud can be successively refined towards areas of the state END FOR

space in which the posterior is dense. The computational: Update the weights. o L. (zx|x;" ")), then normalize

complexity then becomes linear in the number of partitions. them so thad, W=

10: END FOR
11:  Setw” = r{? andx\" = x}" fori = 1.N
12:  Approximate the MMSEEE (x|z1.x) by SV w{"x ")
Pure random importance sampling leads to “gaps and clus3: END IF
ters” in the particle support, especially in high-dimemsio
spaces. An excessive Monte Carlo variation of the predicrapie 1. PARTITIONED QRS: partitioned particle filter ex-
tlon§ can follow, mal_<|ng the filter unrellgble or even Ie_zgll_ln ploiting QMC techniques.
to failures. Substituting the random particles by a deteisni
tic or randomized low-discrepancy—or “Quasi Monte Carlo”
(QMC)—sequence can lead to a better convergence rate w.ildody segments an?2 DOF. We assume Gaussian random
the number of particled’ [10], while lowering the root mean walk dynamics.
square (RMS) estimation error and leading to a variability
reduction from 5% to 20%1[1, 17].

Among the main issues on QMC filters are the difficulty to3.2. Observation likelihoods

design low-discrepancy sequences in spite of the res li .
g pancy seq P anp qt can be argued]] 14] that appearance-based cues constitute

steps, the exploitation of the current measurement in tfie dea rincipled way to derive plethora of measurements. thus of
nition of these sequences, and the possible trade-off leetwe P pe y Ve p ; o
fering a nice trade-off in terms of generality, simpliciand

the reduction of the (quadratic) complexity and the mathe- omplementarity. Our tracker implementation reliesiori-
matical soundness of the algorithms. A QMC counterpart ofOMP Iy B Imp : !

CONDENSATION, henceforth termed QRS (for Quasi Ran_sual cues involved in the likelihood definitigniz |xy,):

dom Sampling), is proposed inJ. We adapted this idea Silhouette-based likelihood -In the vein of [i], we fir.s'F
to the PARTITIONED filter proposed ini]. The final algo- perform a foreground-background silhouette segmentation

rithm is described Tablé. The key idea here is to gather order to obtain the silhouette mask. We sample points inside

propagating and resampling steps. This enables to genera{%g limbs of each projected particle to check whether or not

low discrepancy samples from a particle to be resampleg, th1€ limbs are consistent with the segmented silhouette.
resulting in a more regular state space exploration. Dual silhouette-based likelihood -n order to complete

this first cue, we counterbalance it by the one proposed]in [
The principle is symmetric, consisting in sampling the seg-
mented silhouette and check its consistency w.r.t. thesotirr
projected particle.

Skin blob-based likelihood - To improve localization
Our appearance-based approach infers the human body moa@ekcuracy—especially for thin limbs such as arms—, we set
from its projection in trinocular image sequences. The whol up an additional likelihood function involving skin blob -de
human body model is fleshed out using truncated cones wittection. For each projected particle, we compute the distan
fixed dimensions. These geometric primitives are easily harbetween head and hands and the nearest detected skin blob.
dled and hidden part removal can be obtained in closed fornThe best configurations w.r.t. this cue are the ones showing
The model is based on a kinematic tree consisting of nin¢he lowest distances.

2.3. Quasi Monte Carlo filtering methods

3. TRACKER IMPLEMENTATION

3.1. Human body model



Fig. 1. Snapshots from 2 sequences: walking and gym movement, @op)walking and reading with a different subject
(bottom). Only one of the three images is shown due to spattation.
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Our vision-based HMC system involves three IEEE 1394 |
“progressive scan” Flea 2 color cameras provididg x 480 e
images. We set up the system il & 3 m working area in o«
an indoor environment surveillance context. Some represer,
tative results are shown in figute We only show images ,,,
from one of the3 cameras due to space reasons, what ca

011

be somehow misleading about filter accuracy and movement

complexity. For a more complete overview, the entire video%ig. 2. RMS error (left) and estimator dispersion (right) of
can be found at the URMww. | aas/ ~nf ont mar . the filters for a varying number of particles.

Generally speaking, we notice that tracking is correct as
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soon as a good segmentation of the silhouette is performed, Name RMSE Dispersion Failure Bias
which confirms the results ofLp]. However, as we exploit CONDENSATION 5 5 5 5
skin segmentation, performances are damaged when the sub- QRS 4 4 4 4
ject does not present hands or face on at least one camera. PARTITIONED 3 2 3 3
The results obtained with PARTITIONED QRS strategy are PARTITIONED QRS 1 1 1 2

2 3 2 1

visually more stable than to the ones obtained with ABF [ APF
However, comparing performanges na qualitative way IS NO%aple 2 Sorting of the different PF according to each criteria.
always an easy task, as the projection of the template in the

image can be forked. This is why we propose in the next sec-

tion a quantitative study of our algorithm. 4.2. Filter comparison

In this section, we present a comparison of our PARTI-
TIONED QRS strategy with CONDENSATIONS], QRS
[13], APF [4] and PARTITIONED [1] algorithms. All strate-
gies are normalized with respect to the number of likelihood
evaluations which is the most time consuming part. APF is
4.1. Evaluation setup used with3 layers in order to achieve the minimum number of
particles to be efficient]], and free parameters are tuned fol-
Ground truth positions of the template joints are given by dowing recommendations in/]. PARTITIONED strategies
commercial HMC system from Motion Analysisq]. Itis  involve 2 partitions: one for torso position and configuration,
software calibrated and synchronized with our own trinacul and one for member configuration. A summary of the results
visual tracking system. In order to analyze the averagewsehais proposed in tablg, relatively to the following criteria:
ior of the filters,30 runs are performed on each set of data. As  Accuracy - Figure?2 (a) presents the average global RMS
we tend to set up a nearly real-time system, evaluations aeror of the estimated joint positions with respect to gbun
done limitingV to 100..2000. We assess the performance ontruth, computed over all frames and filter runs. All trackers
various sequences ef 20 s including walking, arm waving, are globally efficient. Errors are reasonable considering o
pointing, and fitness. Trackers are initialized by hand. rough models of the human body, the simple measures and

4. PARTICLE FILTER EVALUATIONS



our nearly real-time context. Looking at the relative perfo ment to complete the study on several subjects, showing that
mances, we can notice that advanced strategies perform be¢active visual HMC systems seem within reach.

ter than the classical CONDENSATION, however APF isless Some interesting future lines of investigation from this
efficient than PARTITIONED QRS for a low number of par- work could involve more advanced visual cues, as the ones
ticles. According to 4], APF needs a minimum number of chosen here are fairly classical. In addition, and to coteple
particles per layer to be efficient. Generally speaking, QMQhis study, one should also take into account importance sam
methods provide better estimates than their MC countexpartpling methods which enable automatic initialization, ider

For a same given error they can lead t80a% reduction of  to propose a fully automatic system.

the number of particles in the best case, which can corsstitut
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