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ABSTRACT

Particle filters (PF) are widely used in the Vision literature for
visual object tracking. However, the selection and the tuning
of the observation likelihood functions involved in the particle
weighting stage are often eclipsed. These considerations have
a strong influence on the tracking performance, especially for
human motion capture (HMC) due to the high number of de-
grees of freedom and the presence of local minima in the state
space. The proposed method is illustrated in the HMC con-
text on a predefined set of likelihoods and assessed w.r.t. a
ground truth provided by a commercial HMC system. This
paper highlights the influence of their associated free param-
eters as well as their combination relevance in order to charac-
terize the optimal unified likelihood function. These insights
lead to some heuristics to tackle the difficult problem of the
likelihood function tuning.

Index Terms— visual tracking, particle filtering, visual
data fusion, tuning.

1. INTRODUCTION

The particle filtering framework [1], first introduced for visual
tracking in the form of the CONDENSATION algorithm [2],
has proved well suited for visual object tracking. The key
idea is to represent the posterior distribution by a set of sam-
ples –or particles– with associated importance weights. This
particle set is recursively updated over time taking into ac-
count the visual data by the means of the observation model.
PFs make no restrictive assumption on the probability distri-
butions entailed in the characterization of the problem, and
permit a probabilistic principled fusion of diverse kinds of
measurements. So, fusing multiple cues in an unified observa-
tion model is widely investigated in the Vision literature[3, 4].
This principle is somewhat questionable as the tuning of the
free parameters involved in the likelihoods related to eachvi-
sual cue is often omitted1 and because the choice/relevance
of the combined cues is seldom argued by quantitative evalu-
ations. An empirical tuning method as well as derived heuris-
tics are proposed here to optimize the unified likelihood with
respect to visual tracking performances.

1[5] is out of the paper scope as it discusses the tuning of the likelihood
function when distinguishing tasks of single or multiple object view-based
tracking, target loss recovery, etc.

Section2 overviews our tracker implementation and the
experimental setup for likelihood tuning. Among the amount
of tracking applications, HMC is a good experimental field.
Indeed, (i) appearance-based approaches are widely acknowl-
edged as they offer a principled way to derive plethora of
measurements [6, 7], (ii) the tracker fine tuning has a strong
impact on the performance due to the presence of local min-
ima which can trap the filter, (iii) a ground truth is available
thanks to commercial HMC setup. Section3 presents and
comments the influence on the tracker performances when
varying the free parameter values of the assumed observation
model. These insights lead to the discussion and heuristics
in section4 to characterize and to fine tune the observation
model given multiple cues with their associated likelihoods.
Finally, section5 summarizes our contributions and discusses
future works.

2. FILTERING SCHEME AND EXPERIMENTAL
SETUP

2.1. Framework

We formulate the tracking problem as the Bayesian state esti-
mation of a Markovian stochastic process. In this context, we
exploit the well-known CONDENSATION [2], which consti-
tutes the basis algorithm on which more advanced ones are
built. The estimated state is computed as the Minimum Mean
Square Error Estimate (MMSEE). The human body is clas-
sically modelled by9 truncated cones offering22 degrees of
freedom (DOF). Its configuration parameters to be estimated
at timek constitute the hidden state vectorxk of a system
which delivers the measurements –images–zk. This system
is characterized by its state dynamicsp(xk|xk−1) –here a ran-
dom walk– and the conditional densityp(zk|xk) of the output
given the state vector, which also defines the likelihood of the
state w.r.t. the measurements. These measurements are in-
ferred from the human body model projection in trinocular
image sequences.

The experimental setup involves three IEEE 1394 “pro-
gressive scan” Flea 2 color cameras providing640 × 480 im-
ages. Ground truth positions of the template joints are given
by a commercial HMC system from Motion Analysis. Both
systems are software calibrated and synchronized. In orderto
analyze the average filter performance,30 runs are performed
on each set of data. We assess the performance on various se-



quences of∼ 20 s including walking, arm waving, pointing,
and fitness.

2.2. Metrics design for filter evaluation

Several criteria are defined, entailing the MMSEE delivered
by each run of the filter and the ground truth from the com-
mercial system. As comparing joint angles may be tricky, and
as significatively different values of the state vector can lead
to similar aspects of the 3D template, the four following met-
rics rely on the true positions of the joint centers of our human
body model, and their estimates provided by the filter:

RMS error w.r.t. true joint center positions - The first
criterion is the average on all joints of the RMS errors be-
tween the joint center estimates and ground truth computed
over all frames and filter runs. This criterion, henceforth
termed “RMSE” is fairly standard in the Vision literature
[8, 7, 9].

Bias - This criterion checks if multiple runs of the filters
provide an estimate centered on the ground truth.

Estimator dispersion -The variance of the HMC system
is analyzed over the filter runs, to ensure that given an input
video stream, the computed estimates are stable enough de-
spite their stochastic nature.

Tracking failure rate - To complete the evaluation, a last
criterion focuses on the failure rate. The tracker is considered
to fail each time the distance between any true and estimated
joint center position exceeds a certain threshold functionof
the bias.

2.3. Observation likelihoods

Our tracker implementation considers as examples four visual
cues whose associated likelihoods have the following form
i.e.

p(zc,i
k |xk)∝exp
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2σ2
i

)
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whereDc,i terms the similarity distance for thec-th camera
and thei-th cue, andσi is its standard deviation beforehand
determined.

Silhouette-based likelihood (sil) -In the vein of [3], we
first perform a foreground-background silhouette segmenta-
tion in order to obtain the silhouette mask. We sample points
inside the limbs of each projected particle to check whether
or not the limbs are consistent with the segmented silhouette.

Dual silhouette-based likelihood (sil2) -In order to com-
plete this first cue, we counterbalance it by the one proposed
in [6]. The principle is symmetric, consisting in sampling the
segmented silhouette and check its consistency w.r.t. the cur-
rent projected particle.

Skin color-based likelihood (skin) - To improve local-
ization accuracy—especially for thin limbs such as arms—,
we set up an additional likelihood function involving skin
color computation. A skin color probability image is com-
puted thanks to the backprojection of an off-line learnt skin

color histogram. For each hypothesisxk, we compute the av-
erage skin color probability on3 virtual points situated on the
projected head and hands of the current particle. A high av-
erage skin color probability on these3 points results in a low
similarity distance for the current hypothesis.

Skin blob distance-based likelihood (skin dist) - We
also propose a variant of the preceding cue. Skin color blobs
are extracted from the skin color probability image. For each
projected particle, we compute the distance between head and
hands and the nearest detected skin blob. The best configura-
tions are the ones showing the lowest distances.

Values of the similarity distances may be different from
one to the others. Thus, in our implementation,Dsil ∈
[0, 255],Dsil2 ∈ [0, 1],Dskin ∈ [0, 255],Dskin dist ∈
[0, 50]. The four likelihoods have a form similar to (1)
provided thatσsil, σsil2, σskin, σskin dist term the cor-
responding standard deviations. Assuming they are mutually
independent conditioned on the statexk, the unified likeli-
hood factorizes as :

p(zk|xk)=
C
∏

c=1

∏

i

p(zc,i
k |xk).

with i ∈ {sil, sil2, skin, skin dist}. Figure1 illustrates the
influence of such free-parameters in the unified likelihood on
the tracking process. Depending on theσi parameter values,
we observe a tracking failure of the left arm in this sequence.

Fig. 1. Tracking on a simple sequence with
(σsil, σsil2, σskin, σskin dist) = (130, 0.5, 20, 30) –
top– and(σsil, σsil2, σskin, σskin dist) = (20, 0.1, 60, 5)
–bottom–. The superimposed avatar represents the estimated
configuration.

3. EXPERIMENTS AND RESULTS

Measurement design and combination can greatly affect the
filter behavior. This is why we assess the effect of theσi

parameter in equation (1).

3.1. Measurement design

Figure 2 presents the RMSE of the estimated template for
our 2 measurement cuesskin andskin dist, quite close in
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Fig. 2. Influence ofσsil on RMSE for30 runs of the CON-
DENSATION filter whenskin cue is used alone (left) and
whenskin dist is used alone (right).

Fig. 3. Histograms of the similarity distancesDskin (left) and
Dskin dist (right) for a given particle cloud.

their definition. Others metrics are not presented due to lack
of space but they present the same characteristics:skin cue
present catastrophic results (RMSE∼ 1m) in comparison
with skin dist cue, whatever the chosenσskin. This is due to
its very peaky nature. Indeed, as high probability skin regions
may be very small, head and hand of the projected particles
are rarely exactly situated in a high probability region (low D

value) as can be seen on figure3 - left. Thus, their weight
is systematically flattened. On the other side, theskin dist

cue presents a smooth profile due to the distance computa-
tion, what enables a more regular distribution of similarity
distances (cf. figure3 - right). This shows how important the
design of the likelihood functions is.

3.2. Measurement tuning

As thesil cue is the most used in the literature, we first fo-
cus on the tracker behavior when used alone in the composite
likelihood. Figure4 (blue curve) presents the influence of the
σsil parameter on a simple tracking withN = 1000. First of
all, we can notice that the optimal value ofσsil depends on the
criterion to be minimized. RMSE leads toσsil = 22, disper-
sion tends to be minimum forσsil = 200, and optimal bias is
reached forσsil = 1. Below this value, the tracking diverges
due to computational underflows (near0 calculations). Intu-
itively, a high value ofσsil results in a less spread estimate
as the considered cue is given less importance with respect to
the assumed prior dynamics. Visually, this corresponds to a
smoother evolution from one frame to the other. RMSE and
bias are lower for a lowerσsil, however, the minimum bias is
0.1 m per joint and the optimal RMSE is0.17 m, what reveals
that the singlesil cue is not sufficient to perform a satisfying
tracking with1000 particles. Obviously, a trade-off has to be
made between accuracy and dispersion.

In order to obtain a good compromise, we choseσsil =
30. We proceed similarly by including in the composite likeli-
hood thesil2 andskin dist cues, what leads toσsil2 = 0.07

and thenσskin dist = 5. This last cue finally enables a sat-
isfying tracking and lowers the RMSE to0.06 m. However,
one can wonder ifsil andsil2 cues are not redundant. We
present on figure4 (red curve) theσsil variation effect while
usingsil, sil2 andskin dist cues together. The filter behav-
ior for high values ofσsil informs us about the irrelevance of
thesil cue, as the filter tends to perform as if it was not ex-
ploited. Thus, we notice that thesil cues slightly improves
the RMSE, but none of the other criteria. We can draw two
conclusions here: first, some cues may be superfluous to use
in combination with others and just only add an unnecessary
computational load without improving global results. Second,
this behavior witnesses a correlation between measurements.
This suggests that the property of independence between mea-
surements conditionally to the state may be partially inappro-
priate.

4. DISCUSSION AND GENERAL HEURISTICS

Fig. 5. Histogram of similarity distances for a particle cloud
vs. histogram of the associated weigths for differentσ

choices.

From our evaluations, we can derive a few observations
concerning the tuning of the likelihoods: (1) there is a trade-
off between accuracy and dispersion, (2) a lowσ(.) value en-
ables a lower bias and a greater mean accuracy, (3) too many
measurements/cameras involved or too lowσ(.) values lead to
a greater dispersion and in the worst case to filter divergence
due to numerical problems (underflows). Thus, we propose
the following heuristics to guide us in the tuning of the likeli-
hoods:

Smooth similarity distance - First of all, one must
choose a similarity distance function with a smooth profile
in order to enable a well-balance distribution of their values
for a given particle cloud (grey histogram in figure5). One
can note that a null distance similariy (i.e. a perfect match
between particle and visual data) never occurs due to our
imperfect models (human, environments, state-measurement
link).

Early σ value tuning - The evolution of this distance
w.r.t. the state vector entries can constitute a good guideline to
the tuning. Figure5 presents the similarity distance histogram
(grey) for a given particle cloud. The early tuning ofσ must
be situated within the range of the histogram. Basically, parti-
cles with a shorter similarity distance than the chosenσ value
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Fig. 4. Influence ofσsil for 30 runs of the CONDENSATION filter depending on whethersil cue is used alone (blue) or
together withsil2 andskin cues (red) : (a) RMSE, (b) estimator dispersion, (c) failurerate, (d) bias.

(green) are considered as “good” ones w.r.t. the considered
cue. The others are considered too “bad”, and they will be af-
fected a low weight. This can be supported by the fact that the
highest slope of a gaussianN (x;µ, σ2) is reached forx = σ.

Refining the values - We can sharpen the initial choice
according to our observations: if we augmentσ (blue curve
in figure5), all weights will be near1 and the considered cue
brings less information. Thus it will be less taken into ac-
count in the filtered density, what will lower the dispersionof
the estimate. If we decreaseσ, the likelihood function shows
a higher peak, which results in a more drastic selection of the
fittest particles (red curve and histogram on figure5). Mean-
while, the estimator will show a high dispersion on various
runs. Moreover, values of the computed weights globally de-
crease too, what can lead to the following problem.

Computational limits - The value ofσ cannot be de-
creased at will : indeed, a too low value results in a null
likelihood function due to computer encoding limits (e.g.
exp(− 1

2
0.52

0.012 ) = 0, so that selectingσ = 0.01 results in null
weights for a similarity distance of0.5 and leads to the filter
failure). This phenomenon is amplified when we use mul-
tiple cues and/or multiple cameras as likelihood functions
are multiplied. Consequently, one has to be very cautious at
decreasingσ values and mixing various heterogeneous cues.

5. CONCLUSION AND FUTURE WORKS

We proposed a study of likelihood tuning in a visual human
motion capture context with respect to four criteria. It appears
that mixing measures is not trivial and the likelihood tuning
has a strong influence on these criteria. Compromises have
to be made between the tracking accuracy and dispersion,
which has been seldom mentioned in the literature. Adding
more measurements can also significantly impact on the filter
dispersion and may not improve global behavior while need-
lessly increasing computational load. From these insights, we
propose some simple heuristics to estimate the range of the
involved free parameters, namely the standard deviations.

Some interesting investigation lines from this work could
involve more advanced measurements. In addition, to com-
plete this study, one should also add visual detectors and im-
portance sampling methods to enable automatic initialization.
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