
1st Reading

October 3, 2009 19:44 WSPC/115-IJPRAI SPI-J068 00766

International Journal of Pattern Recognition1
and Artificial Intelligence
Vol. 23, No. 7 (2009) 1–353
c© World Scientific Publishing Company

EVALUATIONS OF PARTICLE FILTER BASED5

HUMAN MOTION VISUAL TRACKERS
FOR HOME ENVIRONMENT SURVEILLANCE7

MATHIAS FONTMARTY∗, PATRICK DANÈS†
and FRÉDÉRIC LERASLE‡9

CNRS ; LAAS ; 7, Avenue du Colonel Roche
F-31077 Toulouse, France11

and
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This paper presents a thorough study of some particle filter (PF) strategies dedicated
to human motion captured from a trinocular vision surveillance setup. An experimental19
procedure is used, based on a commercial motion capture ring to provide ground truth.
Metrics are proposed to assess performances in terms of accuracy, robustness, but also21
estimator dispersion which is often neglected elsewhere. Relative performances are dis-
cussed through some quantitative and qualitative evaluations on a video database. PF23
strategies based on Quasi Monte Carlo sampling, a scheme which is surprisingly seldom
exploited in the Vision community, provide an interesting way to explore. Future works25
are finally discussed.
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1. Introduction29

Achieving markerless Human Motion Capture (HMC) from wide-angle synchronized
cameras is a motivating challenge and has been widely investigated during the31

last decade in the Computer Vision community. These investigations are especially
motivated by supportive home environment surveillance applications. The broader33

technical aims of vision systems are to track the motions of humans in their daily
life in order to monitor their behaviors. Such systems could enable elderly people35

to live longer independently and safely.
Commercial HMC systems are unsuitable as they are expensive, intrusive — due37

to marker use — and because their portability is limited to home-made environ-
ments. The surveillance application requires standard cameras to impose as few39
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restrictions as possible on both the human performer and the viewing conditions.1

The principle is then to concentrate on advanced vision techniques as well as 3D
human body modeling to make the problem tractable.3

The development of this application clearly requires extensive performance eval-
uations and comparisons on surveillance video databases. Comparisons of trackers5

dedicated to human body parts do exist in the Vision literature but they are typ-
ically restricted to low-dimensional problems. This greatly limits their applicabil-7

ity to HMC where at least 20 degrees of freedom are necessary to parameterize
the whole body joints. Even in the vision-based HMC literature, no systematic9

quantitative evaluations are reported, as most relevant papers classically present
only qualitative evaluations on key-sequences.9,35 Quantitative evaluation of human11

motion recovery requires both videos with ground truth and performance metrics.
Except for hand-labeled joints positioning in videos,16,26 commercial HMC systems13

have been marginally used3,25,40 while they could clearly provide this ground truth
for large video datasets in order to evaluate the performances and to assess the rela-15

tive merits of the algorithms. Moreover, the selection of metrics is an open question
in the HMC literature, contrarily to other vision problems, e.g. face classification.17

In the particle filtering context, Wang et al. in Ref. 40 proposed both image-based
and tracked joint 3D distance metrics while Balan et al.3 and Gupta et al.15 consid-19

ered multiple 3D distances which seem to be significantly more useful than image
distance in many situations.21

State-of-the-art HMC systems13,23 developed in the Vision community consist
in estimating the body model configuration in space which best fits the available23

visual data. They essentially differ in the associated data processing (3D reconstruc-
tion versus appearance based approaches), and the estimation framework (deter-25

ministic versus stochastic optimization). Reconstruction-based approaches aim at
making the model fit with the 3D-point cloud issued from a 3D-sensor system, e.g.27

a stereo head,44 a Swiss Ranger19 or multiple calibrated cameras.26,36 Besides, the
appearance-based approaches infer the model configuration from its projection in29

monocular2,22,35 or multi-ocular2,9,33,43 image sequences. This strategy enables to
derive abundant appearance information from the image contents but is prone to31

misestimate the motion-in-depth especially when using a single camera. Multicam-
eras approaches are employed to increase reliability, accuracy, and reduce problems33

with self-occlusions.
Regarding the estimation process, deterministic approaches — usually based on35

local descent search6,37,38 — are almost neglected, due to their difficulties in han-
dling multimodality. A more general alternative is the particle filtering framework,1037

first introduced for visual tracking purpose in the form of the CONDENSATION
algorithm.17 The key idea is to represent the posterior distribution over the state39

space by a set of samples — or particles — with associated importance weights. This
particle set is first sampled from the state vector initial probability distribution,41

then updated over time taking into account the measurements and a prior knowl-
edge of the system dynamics/observation models. Particle filters have proved to be43
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well suited to the above requirements. Indeed, they make no restrictive assumption1

on the probability distributions entailed in the characterization of the problem, and
permit a probabilistic principled fusion of diverse kinds of measurements. The main3

drawback for particle filters remains the computational cost which increases expo-
nentially (in terms of the required number of particles to ensure a fixed dimension5

free error) with the state-space dimensionality.
The vision literature has focused on the two following key strategies to improve7

particle filters: (i) modify the algorithms themselves to prevent particle wastage,
(ii) design more suited dynamic and observation models for the tracked body parts.9

Though observation models have been intensively studied in order to deal with
variable viewing conditions,1,22,24,31,35 (ii) still constitutes an open problem. Some11

approaches32,38,43 assume strongly constrained models to place further restrictions
on possible poses, yet such assumptions are problematic for motion capture applica-13

tions. Indeed, as the interest is to capture novel motions, we cannot rely on previous
move models. Clearly, the unpredictability and unusual motions we need to capture15

limit the models which can be applied.
Alternatively, the methodology (i) aims to directly control the support of the17

samples. We can here mention search space decomposition techniques,8 annealed
particle filter (APF),2,7 covariance sampling,9,35 unscented particle filter (UPF),3919

and Quasi Monte Carlo sampling which has been surprisingly seldom exploited for
visual tracking purpose.27,29 Unfortunately, few studies3,40 have so far been con-21

cerned with the balance against each other, as very few available results compare
a restricted number of alternative algorithms (UPF,40 APF3) to the original CON-23

DENSATION approach on a small probe set of videos. Consequently, it is not clear
which particle filtering scheme, possibly hybrid, performs best. A thorough study25

comparing the efficiency of most of the above filtering strategies in terms of the fol-
lowing metrics is carried out hereafter given the ground truth: (1) root mean square27

error error, (2) tracking failure rate, (3) dispersion of estimates (e.g. estimator vari-
ance), (4) bias of the estimates. The dispersion is surprisingly seldom taken into29

account despite the intrinsic stochastic nature of any PF tracker. The “stability”
of the estimates, as opposed to their variability, is clearly an important property as31

multiple runs on any given surveillance video should lead to homogeneous results.
Since the strategies can differ in their computational cost per sample, their rela-33

tive comparisons are normalized with respect to the computation time. Recall that
the ground truth is provided by a commercial HMC setup.42 These evaluations are35

performed to exhibit the best filtering strategy to be considered in our near-real-
time surveillance video system which is devoted to natural human-centered indoor37

environment.
This paper is organized as follows. Section 2 briefly sums up the well-known par-39

ticle filtering formalism, and describes some relevant variants. Our trinocular vision
based setup as well as the implementation of trackers are then described in Sec. 3.41

Evaluations and comparisons between distinct strategies on both synthetic and real
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sequences are respectively reported in Secs. 4 and 5. Finally, Sec. 6 summarizes our1

contributions and opens the discussion for future works.

2. Particle Filtering Algorithms3

2.1. Visual-based HMC as a Bayesian filtering problem

Like many other tracking problems, visual-based human motion capture can be5

generically addressed in the context of stochastic (Bayesian) filtering. So, the
information held in the camera images can be fused with a prior knowledge on7

the dynamics of the human limbs, enabling a seamless spatio-temporal motion
analysis. A state vector x is first defined, which gathers the 3D model situa-9

tion and configuration parameters to be estimated. The prior dynamics of the
template between two consecutive instants k − 1 and k must be expressed as a11

transition kernel p(xk |xk−1), which may imply to insert in x derivatives of the
situation/configuration parameters. Besides, the measurement vector zk and obser-13

vation density p(zk |xk) respectively symbolize the visual data available at time k

and its relationship with xk. Then, upon the additional knowledge of the initial state15

probability density function (pdf) p0(x0), the aim is to estimate the posterior pdf
p(xk | z1:k), which expresses all the information on xk captured by z1:k = z1, . . . , zk.17

When considered as a function of xk, the observation density p(zk |xk) depicts
the likelihood of the state vector regarding the measurement. In any appearance-19

based approach, as is the case for this study, the output equation cannot be
expressed in closed-form. The likelihoods of distinct state vector values can just21

be evaluated separately, e.g. by assessing the projections of the corresponding fig-
ure model onto the current camera images. In addition, even if the environment23

is controlled, the likelihood function has multiple modes, some of which can be
very sharp. So, the posterior p(xk | z1:k) is multimodal and cannot be expressed25

analytically. One must then return to approximate filtering schemes. Among these,
particle filtering constitutes a versatile recursive approach4,10,11 in that it can han-27

dle any Markov stochastic system subject to any kind of noise, even if a constructive
model of the state-output relationship is not available. Elements of the theory are29

hereafter recalled.

2.2. Basics of particle filtering31

2.2.1. Generalities

The cornerstone of particle filtering is to represent the posterior probability density33

function p(xk | z1:k) by the point-mass distribution

p(xk | z1:k) ≈
N∑

i=1

w
(i)
k δ(xk − x(i)

k ),
N∑

i=1

w
(i)
k = 1, (1)

35

which represents the selection of a value — or particle — x(i)
k with probability —

or weight — w
(i)
k , i = 1, . . . , N . An approximation of the conditional expectation37
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Table 1. Generic particle filtering algorithm (SIR).

[{x(i)
k , w

(i)
k }]N

i=1
= SIR([{x(i)

k−1, w
(i)
k−1, }]N

i=1
, zk)

1: IF k = 0, THEN Draw x
(1)
0 , . . . ,x

(N)
0 i.i.d. according to p0(x0), and set w

(i)
0 = 1

N
. END IF

2: IF k ≥ 1 THEN {— [{x(i)
k−1, w

(i)
k−1}]

N

i=1
being a particle description of p(xk−1 | z1:k−1) —}

3: FOR i = 1, . . . , N , DO Independently sample x
(i)
k ∼ q(xk |x(i)

k−1, zk). Then, update its weight

by w
(i)
k ∝ w

(i)
k−1

p(zk | x(i)
k

)p(x
(i)
k

|x(i)
k−1)

q(x
(i)
k

| x(i)
k−1,zk)

, prior to a normalization s.t.
P

i w
(i)
k = 1. END FOR

4: Compute the MMSE estimate Ep(xk | z1:k)[xk] from the approximation
PN

i=1 w
(i)
k δ(xk −x

(i)
k )

of the posterior p(xk | z1:k).

5: At any time or occasionally, resample [{x(i)
k , w

(i)
k }]N

i=1
into the equivalent evenly weighted par-

ticle set [{x(s(i))
k , 1

N
}]

N

i=1
, by selecting in {1, . . . , N} the indexes s(1), . . . , s(N) with probability

P (s(i) = j) = w
(j)
k . Then, set x

(i)
k and w

(i)
k with x

(s(i))
k and 1

N
.

6: END IF

of any function f of xk, e.g. the Minimum Mean Square Error (MMSE) estimate,1

immediately follows as E[xk | z1:k]f(xk | z1:k) =
∑N

i=1 w
(i)
k f(x(i)

k ).
For a system described by p(xk |xk−1) and p(zk |xk) with initial prior p0(x0),3

the particle approximation (1) is propagated throughout time according to Table 1.
The “Sampling Importance Resampling” (SIR) algorithm reported therein is fairly5

generic, in that most strategies can fit into this framework,11 provided an adequate
definition of the importance function q(xk |x(i)

k−1, zk) and of the resampling scheme7

respectively exist in steps 3 and 5.
The importance function q(xk |x(i)

k−1, zk) governs the stochastic evolution of9

the particles x(i)
k , i = 1, . . . , N , at each time k, and is selected so as to adaptively

explore relevant areas of the state space. The mathematical expression of the weights11

w
(i)
k then ensures the consistency of the approximation (1). Besides, inserting a

resampling stage limits the degeneracy phenomenon experienced by all sequential13

Monte Carlo filters, i.e. the collapsing of the weights of all but one particle. Note
that this redistribution should be fired only when the filter efficiency goes beneath15

a predefined threshold.11

2.2.2. Elementary schemes17

The CONDENSATION17 — for “Conditional Density Propagation” — is the
instance of the SIR in which q(xk |x(i)

k−1, zk) = p(xk |x(i)
k−1) and w

(i)
k ∝ w

(i)
k−119

p(zk |x(i)
k ). Its performance may be weak, as drawing the particles according

to the system dynamics regardless of the current measurement may well lead21

to assign many of them a low likelihood and thus a low weight. This draw-
back is highly plausible in the HMC context, because of the sharpness of23

the likelihood modes. Besides, the I-CONDENSATION18 samples some particles
according to an importance function π(xk | zk) specified from the current image, e.g.25
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through q(xk |x(i)
k−1, zk) = απ(xk | zk) + βp(xk |x(i)

k−1) + (1 − α − β)p0(xk), with1

(α, β) ≥ (0, 0). Generally, π(xk | zk) relies on the detection of intermittent primi-
tives which, despite their sporadicity, are very discriminant when present.283

2.3. Enhanced particle filtering strategies

Human motion capture, be it appearance-based or grounded on sparse recon-5

struction of 3D information, raises sharp problems which make classical strate-
gies fail unless a very high number of particles is used, thus at the expense7

of efficiency and real-time performance.a First, the state space is of very high
dimension, typically from 20 to 40 even for an elementary first-order dynam-9

ics, e.g. a random walk. Though some early references claimed that particle fil-
ters “beat the curse of dimensionality”, i.e. converge at a rate independent of11

the state dimension, this property does not hold. Daum and Huang5 raised the-
oretical issues which underlie this fact, and derived back-of-the-envelope formu-13

lae for complexity depending on whether the problem is “vaguely Gaussian” or
not. Their illuminating paper shows that for general problems, the computation15

time of a particle filter is linear in the number of particles, yet this number
is truly exponential in the system order so as to ensure a fixed dimension free17

error.
Among the other challenges are the aforementioned multimodality and sharp19

peaks of the likelihood, as well as the information loss through projection. So, more
involved strategies have been envisaged, aiming at a better exploration of state21

space areas which are likely w.r.t. the measurements, while keeping the possibility
for some less likely hypotheses to strengthen along time if they are consistent enough23

with the prior dynamics and the measurements. Some of them are described below,
together with original proposals.25

2.3.1. Important requirements

Two fundamental points have been acknowledged in the particle filter based HMC27

literature in order to catch the likelihood modes. On the one hand, as likely areas
of the state space cannot be portrayed a priori, iterative local searches must be29

designed so as to drive the drawn particles towards these peaks. On the other hand,
the diffusion of particles from a parent sample must itself be carefully designed.31

For instance, spreading particles isotropically from a parent sample is inoperating.
Instead, the dynamics noise, though physically realistic, should be scaled by the33

posterior covariance or by a similar indication extracted from the likelihood evalu-
ations, with the aim to lay more samples on the hard-to-estimate directions. This35

last feature is termed “Covariance based sampling”.34

aDeutscher et al.7 reported failures of CONDENSATION even with a huge number of particles.
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2.3.2. Partitioned sampling1

For filtering problems where the system dynamics comes as the sequence of partial
evolutions and where intermediate likelihoods of the state vector can be assessed3

after applying each partial dynamics, partitioned21 or hierarchical28 schemes apply.
From a succession of sampling operations followed by resampling based on the inter-5

mediate likelihoods, the particle cloud can be successively refined towards areas of
the state space in which the posterior is dense. The selected strategy assumes a par-7

tition of xk into the M subvectors {x1
k, . . . ,xM

k } such that the full dynamics and
the likelihood respectively factorize into p(xk |xk−1) =

∏M
m=1 pm(xm

k |xm
k−1) and9

p(zk |xk) =
∏M

m=1 lm(zk |x1
k, . . . ,xm

k ), where the intermediate likelihoods lm(. | .)
concern a subset of the state vector all the more important as m → M .21 Its deriva-11

tion from the SIR is schematized in Table 2. Its computational complexity is linear
in the number of partitions instead of being exponential in the number of degrees of13

freedom. Note that the number of particles may sometimes be reduced as the par-
tition index grows, thus lowering the cost. Applying this basic partitioned strategy15

to the HMC context implies that separate parts of the body can be independently
localized. According to some authors,9 geometrical information must be supple-17

mented by color or other labeling cues to ensure a proper tracking.

2.3.3. Annealed particle filter19

The Annealed Particle Filter — or in short APF — includes a local stochastic opti-
mization stage inspired by simulated annealing.7 The main idea is to replace step 321
of the SIR by the recursive run of L layers, as outlined in Table 3. Each particle
x(i)

k,l−1 related to the lth layer, l = 1, . . . , L, is sampled from a “layer dynamics func-23
tion” pl(xk,l |xk,l−1), then gradually trapped towards the likely areas of the state
space thanks to the evaluation of “layer likelihood function” pl(zk |xk,l). Step 3225
proposes a way to gradually sharpen both the state space exploration and the
likelihood modes. Notice that in the case when the prior dynamics is a Gaussian27
random walk p(xk |xk−1) = N (xk;xk−1, ∆k) with ∆k diagonal, sampling from

Table 2. Partitioned particle filtering.

[{x(i)
k , w

(i)
k }]N

i=1
= PARTITIONED([{x(i)

k−1, w
(i)
k−1, }]N

i=1
, zk)

30: Replace step 3 of the SIR algorithm on Table 1 by the following, τ
(i)
0 being set to w

(i)
k−1.

31: FOR m = 1, . . . , M , DO

32: FOR i = 1, . . . , N , DO Independently sample x
m,(i)
k ∼ pm(xm

k |xm,(i)
k−1 ), and associate

(x
1,(i)
k , . . . ,x

m,(i)
k ) the weight τ

(i)
m ∝ τ

(i)
m−1lm(zk |x1,(i)

k , . . . , x
m,(i)
k ). END FOR

33: IF m < M THEN Resample [{(x1,(i)
k , . . . ,x

m,(i)
k ), τ

(i)
m }]N

i=1
s.t. P (s(i) = j) = τ

(j)
m ; rename

the obtained evenly weighted particle set as [{(x1,(i)
k , . . . ,x

m,(i)
k ), τ

(i)
m = 1

N
}]N

i=1
. END IF

34: END FOR — Then, [{x(i)
k , w

(i)
k = τ

(i)
M }]N

i=1
is a consistent description of p(xk | z1:k).
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Table 3. Annealed particle filtering.

[{x(i)
k , w

(i)
k }]N

i=1
= APF ([{x(i)

k−1, w
(i)
k−1, }]N

i=1
, zk)

30: Replace step 3 of the SIR algorithm on Table 1 by the following, [{x(i)
k,0, w

(i)
k,0}]Ni=1 being set

to [{x(i)
k−1, w

(i)
k−1}]Ni=1, with 1 < α1 < · · · < αL and β1 < · · · < βL < 1 being selected

beforehand.
31: FOR l = 1, . . . , L, DO

32: FOR i = 1, . . . , N , DO Independently sample x
(i)
k,l ∼ pl(xk,l |x(i)

k,l−1) = [ p(xk |
xk−1)αl ]

xk=xk,l;xk−1=x
(i)
k,l−1

.

Associate it the weight w
(i)
k,l ∝ pl(zk |x(i)

k,l) = [p(zk |xk)βl ]
xk=x

(i)
k,l

. END FOR

33: Normalize {w(i)
k,l} s.t.

P
i w

(i)
k,l = 1. IF l < L, THEN resample [{x(i)

k,l, w
(i)
k,l}]

N

i=1
. ENDIF

34: END FOR — The particles set [{x(i)
k,L, w

(i)
k,L}]Ni=1 has just to be renamed [{x(i)

k , w
(i)
k }]Ni=1.

p(xk |xk−1)αl is equivalent to sampling from N (xk;xk−1,
1
αl

∆k). On a theoretical1

side, it must be pointed that in its above form, APF is not a mathematically sound
Monte Carlo method.73

2.4. Quasi Monte Carlo filtering methods

In particle filtering, the stochastic nature of the particle locations enables to adap-5

tively explore areas of the state space in which the posterior distribution is dense.
Yet, especially in high-dimension spaces, pure random importance sampling leads7

to “gaps and clusters” in the particle support. An excessive Monte Carlo variation
of the predictions can follow, making the filter unreliable or even leading to failures.9

An alternative is to substitute the random particles by a low-discrepancy deter-
ministic sequence, enjoying a guaranteed degree of uniformity. For a d-dimensional11

state space, the error in approximating integrals through such so-called Quasi Monte
Carlo methods has been proved to converge at a rate of O(N−1 logd N)) in the num-13

ber N of particles, which is much better than O(N− 1
2 ) for standard Monte Carlo.12

Yet, analyzing the accuracy of deterministic QMC approximations is difficult and15

prevents the use of statistical procedures. So, randomized QMC methods have been
developed in order to define low-discrepancy sequences whose elements taken indi-17

vidually have a given distribution. These enable the design of unbiased estimators
with reduced variance, whose approximation error can surprisingly converge as19

O(N− 3
2 log

d−1
2 N) for sufficiently smooth integrands.

In the context of visual tracking, the performances of a deterministic and of a21

randomized QMC particle filter against a particle filter based on standard random
sampling have been assessed only in two references, respectively.27,29 Therein, a23

high number of runs on low-order synthetic experiments, with filters entailing the
same number N of particles, proves that for deterministic or randomized QMC25

filters, (1) the RMS estimation error w.r.t. ground truth is always smaller, (2) its
standard deviation over the whole temporal sequence is also lower, (3) when N27
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increases, the RMS estimation error drops all the faster as N is low and/or there is1

much noise, (4) for a given tolerance to errors, QMC needs between half and third
the number of particles, which speeds its execution. Visual tracking experiments3

on real sequences, where the state space dimension is of the order of 10, show
that the deterministic QMC filter29 performs well on the whole time history and5

can recover from failures due to sudden changes or partial occlusions. As for the
randomized QMC filter,27 it is proved unbiased w.r.t. the true posterior mean and7

enjoys a variability on each entry of the estimated state vector from 5% to 20%
below that of Monte Carlo particle filter. The authors claim a savings in the number9

of particles between 20% and 60%, which is more pronounced when few particles
are used, together with a significant reduction of the ten-dimensional volume to be11

explored at each step.
Among the main issues on QMC filters are the difficulty to design low-13

discrepancy sequences in spite of the resampling steps, the exploitation of the cur-
rent measurement in the definition of these sequences, and the possible trade-off15

between the reduction of the (quadratic) complexity and the mathematical sound-
ness of the algorithms. The quasi-random counterpart of CONDENSATION,14 here-17

after named QRS-CONDENSATION, is presented in Table 4, where M terms the
dimension of x. It is considered in this paper, together with its straight partitioned19

version, henceforth termed PARTITIONED QRS.

3. Problem Formulation21

3.1. Generalities

Recall that our appearance-based approach infers the human body model from its23
projection in trinocular image sequences. The whole human body model used for

Table 4. Quasi-random sampling CONDENSATION (QRS-CONDENSATION).

[{x(i)
k , w

(i)
k }]N

i=1
= QRS − CONDENSATION ([{x(i)

k−1, w
(i)
k−1, }]N

i=1
, zk)

1: IF k = 0, THEN Generate a random QMC Sobol sequence u(1), . . . , u(N) in [0, 1)M and

convert it into x
(1)
0 , . . . , x

(N)
0 ∼ p0(x0). Set w

(1)
0 = · · · = w

(N)
0 = 1

N
. END IF

2: IF k ≥ 1 THEN {— [{x(i)
k−1, w

(i)
k−1}]

N

i=1
being a QMC weighted description of p(xk−1 |

z1:k−1) —}
3: FOR i = 1, . . . , N , DO

4: Select s(1), . . . , s(N) in {1, . . . , N} s.t. P (s(i) = j) = w
(j)
k . Set Cj = Cardinality{i :

s(i) = j}.
5: FOR j = 1, . . . , N , DO Generate a random QMC Sobol sequence u(1), . . . , u(Cj) in [0, 1)M

and convert it into x
(Cj−1+1)

k , . . . , x
(Cj−1+Cj)

k ∼ p(xk |xj
k−1). END FOR

6: Set w
(i)
k ∝ p(zk |x(i)

k ), prior to a normalization s.t.
P

i w
(i)
k = 1.

7: END FOR — [{x(i)
k , w

(i)
k }]N

i=1
is then a QMC weighted description of p(xk | z1:k) —

8: Compute the MMSE estimate Ep(xk | z1:k)[xk] from [{x(i)
k , w

(i)
k }]N

i=1
.

9: END IF
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Fig. 1. 3D model and associated DOFs.

HMC is presented in Fig. 1. Each limb is fleshed out using truncated cones with1

fixed dimensions. These geometric primitives are easily handled, for their image
projections and hidden parts removal can be obtained in closed form.1 The model3

is also based on a kinematic tree consisting of nine body segments. Six degrees of
freedom (DOF) are used for global position (tx, ty, tz) and orientation (rx, ry, rz).5

The shoulder and the thigh are treated as ball joints with three DOFs and the
remaining joints are modeled as hinges requiring only one DOF.7

All these 22 parameters are accounted for in the state vector xk related to the
three frames at instant k. With regard to the dynamics model p(xk |xk−1), the9

human limb motions are difficult to characterize over time. This weak knowledge is
formalized by defining the state vector as xk = [tx, ty, tz, rx, ry , rz, dof1, . . . , dof16]

′
11

and assuming that its entries evolve according to mutually independent Gaussian
random walk models, viz. p(xk |xk−1) = N (xk;xk−1, Σ), where N (.; µ, Σ) is a13

Gaussian distribution with mean µ and diagonal covariance Σ.
Each tracker implementation relates to the modular architecture depicted in15

Fig. 2. The filtering module implements the PF schemes detailed in Sec. 2 while
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Fig. 2. Synopsis of our tracking modular architecture.

the measurement module is in charge of particle likelihood evaluations described1

here below.

3.2. Observation likelihoods3

It can be argued1,9,30,35 that appearance-based cues offer indeed a principled way
to derive a plethora of measurements. We have constructed the weighting func-5

tion on the basis of two visual features, namely foreground-background and skin
blob segmentation. Mixing these cues offers a nice trade-off in terms of generality,7

simplicity, and complementarity.

3.2.1. Silhouette-based likelihood9

In the vein of Ref. 7, the first feature extraction performed is foreground–
background subtraction. A binary image Il,s is constructed for each camera l, with11

foreground pixels set to 1 and background set to 0 (Fig. 3(b)). Given the 3D model
projection for the configuration xk, Np pixels pl,i, i ∈ {1, . . . , Np} are uniformly13

sampled in the interior of the projected truncated cones. The silhouette-based like-
lihood follows:15

p(zl,s1
k |xk) ∝ exp

(
− D2

l

2σ2
s1

)
, Dl =

1
Np

Np∑
i=1

(1 − Il,s(pl,i)), (2)

where i indexes the Np model points, Il,s(pl,i) is the associated pixel value (0 or 1)17

in image Il,s for camera l, and σs1 is a standard deviation being determined a priori.
Figure 4(b) shows the plot of the measurement function obtained by varying only19

one DOF (the right shoulder angle). The function is very sharp around the cor-
rect angle. This likelihood reaches its highest value if the projected model is inside21

the silhouette without demanding that the silhouette area is fully explained. Con-
sequently, some uninformative model configurations situated inside the silhouette23

may peak this likelihood. This situation is alleviated by the use of the dual cue.
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(a) (b)

(c) (d)

Fig. 3. (a) Feature extraction for the input image, (b) foreground segmentation, (c) skin blob
segmentation, (d) skin blob distance image.

3.2.2. Dual silhouette-based likelihood1

The principle is here to sample Ns points pj from the segmented image Il,s. The
likelihood p(zl,s2 |xk) has a form similar to (2) provided that σs2 corresponds to3

the standard deviation. The similarity distance Dl follows

Dl =
1

Ns

Ns∑
j=1

(1 − f(pl,j ,xk)),
5

where f(pl,j ,xk) = 1 if the point pl,j is in the silhouette corresponding to the
model projection of xk for camera l, 0 otherwise. Figure 4(c) shows the plot of this7

likelihood function for the same example.

3.2.3. Skin blob-based likelihood9

To achieve more precision in the localization — especially for thin limbs such as
arms — we set up an additional likelihood function involving skin blob detection.11

The image processing module computes a skin probability image thanks to an off-
line learnt skin color histogram back-projection. Skin blobs are extracted (Fig. 3(c))13

and a skin color blob distance image Il,skin dist (Fig. 3(d)) is computed.
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Fig. 4. Example of a single DOF variation using the image and model configuration in (a) and

likelihood functions (b)–(e) : p(zl,s1
k |xk), p(zl,s2

k |xk), p(zl,skin
k |xk), p(zs1,s2,skin

k |xk).
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For each hypothesis xk, we compute the mean distance in pixels between the1

image projection of three virtual markers p1,p2,p3 — respectively corresponding
to the head and the hands — and the nearest detected skin blobs, which results in3

the following similarity criterion:

Dl =
1
3

3∑
i=1

Iskin dist(pi).
5

assuming σskin corresponds to a priori standard deviation in (2).

3.2.4. The composite likelihood7

All these measurements are combined in a similar way whatever the time index k

so as to account for the contents of all images. Assuming they are mutually inde-9

pendent, conditioned on the state xk, the composite likelihood factorizes as follows,
given C = 3 is the number of cameras:11

p(zs1,s2,skin
k |xk) =

C∏
l=1

p(zl,s1
k |xk) · p(zl,s2

k |xk) · p(zl,skin
k |xk).

This is illustrated in Fig. 4(e).13

3.3. Particle filter tuning

We hereafter discuss the tuning of the free parameters involved in the PF strategies,15

i.e. in the initial prior, the dynamics and the likelihood models, as well as the number
of particles and of layers for layered strategies. Those are used in both synthetic17

and real sequences, what demonstrate the tracker’s ability to deal with distinct
data sources and to capture a wide range of human motions.19

3.3.1. Likelihood parametrization

All parameters σ involved in the likelihoods were first tuned through simple heuris-21

tics, then sharpened from experimental data to achieve a stable configuration.
Selecting the σ parameters is a very complex task, never thoroughly tackled in23

the literature so far.20 If our measurement models were perfect, the “ideal” simi-
larity distance when an hypothesis is located exactly on the ground truth should25

be zero. In practice, this is never the case. As a consequence, we have to choose
well-balanced values for the σ parameters. We use the following heuristics to guide27

us in this choice.

3.3.1.1. Similarity distance29

The evolution of this distance w.r.t. the state vector entries can constitute a good
guideline to the tuning. Figures 5(a) and 5(b) present the similarity distance values31

for the experiment described in Fig. 4(c). As can be seen, values spread between
0.48 and 0.54. The early tuning of σ must be situated within this range.33
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Fig. 5. (a) The similarity distance of the “dual silhouette” cue described in Sec. 3.2 and (b) the
associated histogram. (c)–(e) present the likelihood functions respectively for σ = 1.0, σ = 0.5
and σ = 0.1
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3.3.1.2. Lowering the values1

We can sharpen the initial choice by lowering it. Figures 5(c)–5(e) show the likeli-
hood function with different values of sigma (1.0, 0.5 and 0.1). As sigma decreases,3

the likelihood function shows a higher peak, which results in a more accurate esti-
mate and a more drastic selection of the fittest particles. However, values of the5

computed weights globally decrease too, which can lead to the following problem.

3.3.1.3. Computational limits7

The value of σ cannot be decreased at will: indeed, too low a value results in a null
likelihood function due to computer encoding limits (e.g. exp(1

2
0.52

0.012 ) = 0, so that9

selecting σ = 0.01 results in null weights and leads to the filter failure).

3.3.1.4. Well balanced multicues11

This last mentioned phenomenon is amplified when we use multiple cues and/or
multiple cameras as likelihood functions are multiplied. Consequently, one has to13

be very cautious at decreasing σ values.
From the above considerations, manual fine tuning on key-sequences has led to15

the empirical values

σs1 = 0.1, σs2 = 0.07, σskin = 517

though with no guarantee that they are optimum. The automatic tuning of these
likelihood free parameters is undoubtedly an open question in the vision litera-19

ture, all the more because it strongly affects the tracker performances. σs1 and σs2

values are quite the same as they represent a superimposition ratio between the21

segmented silhouette and the projected one. σskin seems higher but is expressed in
pixels as Dskin usually lies between 0 and ∼ 50 pixels. Finally, σ parameters are23

well-balanced.

3.3.2. Filter strategies25

In this study, the SIR, PARTITIONED, APF, QRS and PARTITIONED QRS
strategies are evaluated. All filters are initialized “by hand”. Concerning the Gaus-27

sian random walk dynamics p(xk |xk−1) mentioned in Sec. 3.1, Table 5 gathers
the selected standard deviations of the dynamics noise when the acquisition rate29

is 5 Hz.
The APF filter is run with three layers as more layers induce too few particles31

in each layer to allow an efficient tracking. αl and βl, l ∈ {1, . . . , 3}, parameters are
chosen according to the guide rules presented in Ref. 7 and sharpened by experi-33

ments resulting in α1 = 1, α2 = 4, α3 = 4 and β1 = 0.1, β2 = 0.4, β3 = 1.
The PARTITIONED filter is used with two partitions. The first one is focused as35

usual on the six parameters needed to localize the torso, while the others consist of



1st Reading

October 3, 2009 19:44 WSPC/115-IJPRAI SPI-J068 00766

Evaluations of Particle Filter Based Human Motion Visual Trackers 17

Table 5. Standard deviation of the ran-

dom walk dynamics applied on each DOF
of the human body configuration.

Base translations 0.07m
Base rotations 0.05 rad
Shoulder ball joints 0.1 rad
Elbow hinge joints 0.3 rad
Hip ball joints 0.1 rad
Knee hinge joints 0.1 rad

the limbs extremities.9 This is an intuitive partitioning which seems fairly efficient1

according to the different tests we ran. For a more complete study, such parameters
should be tested quantitatively to achieve the best configuration of each filtering3

scheme.
In addition, based on Ref. 40, each experiment in this study has been conducted5

by keeping constant the number of likelihood evaluations, which is the most time
consuming part of the algorithms: when SIR trackers are run with N particles,7

PARTITIONED trackers are run with N/2 particles per partition, and APF use
N/3 particles per layer. Actually our trackers perform more or less at 1 Hz for 5009

likelihood evaluations on each step. This is not yet real-time, but performances
can still be improved by optimizing the C++ code or by reducing the size of the11

processed images. Due to this strong temporal constraint, we limit our evaluations
to a number 100 < N < 1500.13

3.3.3. Metrics design for filter evaluation

To evaluate the MMSE estimates x̂k delivered by the filter with respect to ground15

truth tk, we set up the following metrics:

• Error w.r.t. true joint positions: The accuracy of a pose estimate is measured17

thanks to the average RMS error between the true positions of the J joints
mtk

j , j ∈ 1, . . . , J and their estimates m dxk,r

j :19

1
J

J∑
j=1

√√√√ 1
K

K∑
k=1

1
R

R∑
r=1

‖mtk

j − m dxk,r

j ‖2
2, (3)

where r = 1, . . . , R indexes each trial on a given single sequence. The RMS error21

is computed on all frames and all runs of the filter. This criterion seems to become
a standard in Computer Vision literature.3,40,41 One can note that error involves23

joint positions but no computation is done on the state vector itself. Indeed,
comparing joint angles is a complex task and distinct configuration vectors can25

lead to the same body pose. This criterion will henceforth be denoted as RMSE
(Root Mean Square Error).27
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• Bias: We have to check if multiple runs of the filters provide an estimate which1

is centered on the ground truth. Thus, we design the following criterion:

1
J

J∑
j=1

∥∥∥∥∥ 1
K

K∑
k=1

(
mtk

j − 1
R

R∑
r=1

m dxk,r

j

)∥∥∥∥∥
2

, (4)
3

which is the average bias of the estimate with respect to the ground truth.
• Dispersion of the estimator: The variance of the estimated configuration must5

be analyzed over the filter runs. This is a key point as an average estimate close
to ground truth does not necessarily imply a good quality of the estimate on a7

single run due to the stochastic nature of the tracker. This is problematic as any
markerless HMC system must deliver stable outputs for a given video stream.9

The variance of the estimate is computed as follows:

1
J

J∑
j=1

√√√√ 1
K

K∑
k=1

1
R

R∑
r=1

∥∥∥∥∥m dxk,r

j − 1
R

R∑
r=1

m dxk,r

j

∥∥∥∥∥
2

2

. (5)
11

• Tracking failure rate: To complete our evaluation, we set up a last criterion which
focuses on the rate of failures. We consider the tracker fails each time one joint13

has a distance to the ground truth greater than TFailure (in practice, we chose
0.2 < TFailure < 0.3 depending on the mean error). The number of tracking15

failures is computed at the following rate:

1
R

1
J

1
K

R∑
r=1

J∑
j=1

K∑
k=1

fails(m dxk,r

j ), (6)
17

where fails(mx̂k,(r)
j ) = 1 if ‖mtk

j − m
x̂k,(r)
j ‖2 > T 2

Failure, 0 otherwise.

Several factors and assumptions affect the above metric estimates: 3D model19

shape/kinematic, dynamics model, measures, etc. We choose to assess all strategies
gradually on real but also synthetic sequences. Synthetic data allow to control21

the image acquisition process. Thus, the filtering strategies can be characterized
separately as the underlying system models and assumptions attempt to better fit23

the video contents.

4. Experiments on Synthetic Sequences25

4.1. Experimental design

Synthetic sequences have been generated under an OpenGL environment. Three27

virtual cameras in a triangular configuration take images of configurations of the
3D human model in front of a uniform background (Fig. 6). Test videos including29

natural human motions like arm waving, jumping and walking are produced. Below,
we present only the results on the “arm waving” sequence (Fig. 7) which supports31

the major results. Our synthesis sequences use a human model which perfectly fits
our template. 80 runs have been performed on each sequence.33
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Fig. 6. Images from the three virtual cameras.

Fig. 7. Synthesis video and filter runs — Every 10th frame from one camera: CONDENSA-
TION (top), PARTITIONED QRS (middle), APF (bottom). The 3D avatar represents the MMSE
estimate.

4.2. Experimental results1

4.2.1. Root mean square error

This criterion measures the tracker accuracy relative to the ground truth.3

Figure 8(a) shows the average Euclidean error (Eq. (3)) between the MMSE
estimate of the tracked joint positions and the ground truth values (RMSE).5

According to Ref. 7, APF is statistically superior to any other strategy as soon
as a minimum number of particles is used. Under this minimal value, the APF filter7

cannot perform better than the classical SIR.
PARTITIONED is efficient too in terms of error to the ground truth. This is9

quite logical as it divides the search space into smaller partitions for which the
number of particles is enough to improve accuracy.11

QMC approaches seem better anyway than their MC counterparts, even if accu-
racy improvement may be very slight. However, for a low number of particles, dif-13

ferences are more significant, confirming the observations made in Ref. 27. This is
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Fig. 8. Quantitative evaluation of filter outcomes on synthesis sequences. (a) RMSE, (b) estima-
tor dispersion, (c) tracking failure rate, (d) bias.

a consequence of the low-discrepancy of random QMC sequences. Search space is1

explored in a more uniform way, and thus, estimates are better. One should notice
however that we use a QMC algorithm adapted to have an O(N) complexity though3

at the expense of mathematical correctness.
Figure 7 confirms these results. We can see that the CONDENSATION pro-5

vides a poor tracking of arms while PARTITIONED QRS shows good results. APF
estimates are fairly satisfactory. Nevertheless, APF results seem worse than those7

of PARTITIONED QRS, for example; but we have to recall here that these are
images from one single run of the algorithms. This leads us to the next cue studied:9

the dispersion of the estimator.

4.2.2. Variance of the estimator11

Given Eq. (5) and Fig. 8(b), one of the main conclusions of these preliminary
experiments is that QMC methods provide more stable outputs than their MC13
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counterparts. PARTITIONED strategies also show a lower estimate variability than1

other methods. Again, we posit that this is due to their splitting of the state space.
Thus, their efficient number of particles, computed following Ref. 11 and visible3

in images from Fig. 7, is higher, resulting in a more “stable” estimate. The APF
presents more stable results than the CONDENSATION, but still less than the5

PARTITIONED family for a reasonable number of particles.
Hence, while choosing a filter strategy, we must take into account the dispersion7

criterion. The APF and PARTITIONED QRS schemes constitute a good alternative
with respect to both previous criteria.9

4.2.3. Failure rate

To evaluate the robustness of each filter, Eq. (6) counts the number of times the11

error to ground truth exceeds a given threshold Tfailure all over the frames processed
by R runs of the filters. Of course, the failure number depends on the selected13

threshold, but the relative robustness of the strategies is independent of this value.
The results presented in Fig. 8(c) are slightly linked to the two previous ones. This15

can be understood as the rate of “target loss” of the filters.
The PARTITIONED QRS is confirmed to present good performances. APF17

strategy also presents a low failure ratio; these two strategies definitively constitute
a good choice with respect to our criteria. QRS strategies fare better in terms of19

failures.

4.2.4. Bias21

Figure 8(d) shows the average bias of each filter, computed according to formula
(4). It tends towards 0 as the number of particles grows, showing that estimates23
are globally centered on the ground truth. Thus, our measurement cues seem dis-
criminant enough to enable a satisfying behavior of the filters.25

We can see that APF has a lower bias than the others. This can be the conse-
quence of its trend to model only the main mode of the posterior distribution.327

Table 6 sums up our evaluations on all sequences when considering unambiguous
data. The commonly used APF, even if only few quantitative studies can be found29
in the literature, works well but surprisingly PARTITIONED QRS provides similar
or better performances. However, those performances have been derived from a31

Table 6. Sorting of the different strategies according to each criterion.

Name Accuracy Dispersion Failure Rate Bias

CONDENSATION 5 5 5 5
QRS 4 4 4 4
PARTITIONED 2 2 2 3
PARTITIONED QRS 1 1 1 2
APF 3 3 3 1
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very friendly context provided by synthesis images. Real sequences provide a more1

complex problem to tackle as our models are not always fully adapted to the tracked
target. The above results must be shaded by real data evaluation.3

5. Experiments on Real Sequences

In this section, we develop two main evaluations. First, we present a quantitative5

assessment on real sequences with a ground truth provided by a commercial HMC
system in order to enlighten the best filtering strategy with regard to our criteria.7

In the second part, we qualitatively study its behavior on various subjects in a
cluttered real environment.9

5.1. Experiment design

Some web databases of human movement video sequence already exist, such as11

Ref. 41, proposing four different subjects performing different standard movements.
However, as we exploit skin color detection as a discriminant natural feature, sub-13

jects must wear long sleeve clothes in order to accurately localize hands, which is
seldom the case in such databases. Beyond this practical consideration, we are inter-15

ested in near real-time application, i.e. with video acquisition frequency far below
100 Hz. In addition, we with to have all control over data to free ourselves from gen-17

erally heavy convention and model adaptation between third-party database and
our softwares. This is the reason why we have set up our own sequence database.19

The commercial HMC system42 which provides us the ground truth is consti-
tuted of ten infra-red cameras acquiring data at 100 Hz. The subject wears special21

markers reflecting infra-red light, and the system localizes their 2D position on
each image. 3D coordinates of each marker are then triangulated. Finally, a skele-23

ton matching algorithm processes the data to retrieve the bone configurations and
joint positions.25

The systems are pre-calibrated using a 3D reference object where a few markers
are fixed in order to estimate the extrinsic parameters between our video-based27

HMC system and the commercial HMC system. Thanks to this offline calibration
and online synchronized acquisition between our system and the commercial one,29

ground truth spatio-temporal data is available for each analyzed video issued from
the surveillance system.31

Figure 9(a) shows the projection of model joints from the commercial HMC
system onto an image from our video system. Our three Firewire cameras are placed33

in a triangle configuration in front of the subject (Fig. 9(b)). They provide 640×480
color images at 5 Hz.35

5.2. Experimental results

Tracking has been performed on four different sequences from 50 to 100 images37

(simple arm movement, walking, fitness and a mix of walking and arm movement).
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(a) (b)

Fig. 9. (a) Projection of the HMC ground truth configuration blends into an image from our
video camera system. The red point is the root of the model, green points are leg joints and blue
points are arm joints. (b) Configuration of the two HMC systems.

Fig. 10. Images from the three cameras with avatar reprojection taken during the walking
sequence, which presents partial occlusions of body members.

Each tracker has been run between 50 and 80 times depending on the length of1

sequences. Figure 11 proposes some screenshots of the different sequences on which
is run an APF strategy with 400 particles and three layers. Due to space rea-3

sons, we only show the frames from one camera, which can be somehow misleading
about filter accuracy and movement complexity (cf. Fig. 10). For a more complete5

overview, the entire videos can be found at the URL: www.laas/∼mfontmar. The
next subsections present the results with regard to the different metrics we set7

up, but also additional considerations derived from our evaluations. Due to lack of
space, we only present the quantitative results obtained for two sequences which9

are representative of the global behavior.

5.2.1. Accuracy11

Figures 12 and 13(a) present the average global RMSE of the estimated joint posi-
tions with respect to the ground truth. First of all, we must notice that all trackers13

are globally efficient. Errors generally lie below 12 cm, which is reasonable consid-
ering the modeling approximation and data acquisition. Computer vision litera-15

ture classically presents errors below 10 cm.16 This can be explained by our rough
model of the human body and our simple measures. Moreover, to achieve better17

performance, the number of particles needs to grow exponentially. Our real-time
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Fig. 11. Run of the APF strategy on four different sequences (one on each line); from top to
bottom: simple arm movement (1), walking (2), fitness (3), mix of walking and arm movement
(4). Screenshots are taken from the central camera.

constraints force ourselves to limit the number of samples used, thus limiting accu-1

racy. However, we are interested here in the relative behavior of the filters. We
notice that advanced strategies perform better than the classical CONDENSA-3

TION, which seems consistent with the results obtained on synthetic data. APF
and PARTITIONED relative performances may vary according to the sequence. In5

sequence (2) (walking), PARTITIONED strategies may be confused while tracking
the torso as arms move along the upper body.7

Generally speaking, QMC methods seem to provide better estimates than their
MC counterparts, which is logical with regard to the synthesis sequence evaluations.9

For a same given error they can lead to a 25% reduction of the number of particles
in the best case (sequence (2)), which can constitute a significant gain in computing11

time.
The avatar superimposition for the state vector estimate (Fig. 11) confirms that13

tracking provides acceptable results in most cases. Errors on sequence (2) are higher
due to the long distance between the subject and the cameras on a long part of the15

sequence, but visually, tracking seems as satisfactory as on the other sequences.

5.2.2. Joint error and measurements17

Figure 14 presents the average error of the APF on sequence (1) for each joint.
First of all, we can see that errors are really different from one joint to the other.19

Nearly all joint errors are below 10 cm but feet present very high localization errors.
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Fig. 12. Evaluation on sequence (1): (a) Mean error, (b) variance, (c) tracking failure rate (d) bias
of the filters for a varying number of particles N .

This is not really surprising as members are always more difficult to track than1

torso. However hands present an acceptable localization error, due to our skin blob
distance measure. Introducing a measure taking into account the position of the3

final points of the kinematic chain greatly improves their tracking. As we do not
set up such a measurement for the feet, their tracking is less accurate. Further-5

more, the segmented silhouette may present a bad quality especially on the ground
because of the shadows. This damages feet localization too. Elbows are tracked7

fairly consistently, and this is due to their leanness with respect to the torso or
even the legs. This is confirmed by the video sequences showing the projected esti-9

mated configuration (Fig. 11). Additionally, experiments made without using the
skin blob distance measure confirmed the tracking of hands can reveal as poor as11

the foot one. This also reveals that our measurement functions need improvement
to achieve a better estimate of the body pose.13
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Fig. 13. Evaluation on sequence (2): (a) Mean error, (b) variance, (c) tracking failure rate (d) bias
of the filters for a varying number of particles N .

5.2.3. Variance1

Variances presented in Figs. 12 and 13(b) seem to be correlated with the plots
obtained on synthetic data. This is quite logical as variance does not depend on3

the ground truth. However, it can still be influenced by the context and the model
accuracy such as in sequence (2) for example.5

As was the case for synthetic sequences, PARTITIONED and APF schemes
generally present a lower variance. QMC versions of the filters tend to provide a7

more “stable” estimate than the classical MC counterparts. The evaluation of filter
estimate variance globally seems consistent with the results obtained on synthesis9

sequences.

5.2.4. Tracking failures11

The number of tracking failures is shown in Figs. 12 and 13(c). Results are consis-
tent with those obtained on synthesis sequences: APF always presents a low number13
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Fig. 14. Mean error of each joint for an APF strategy on a 75 image sequence.

of tracking failures, QMC strategies outperform MC ones and PARTITIONED1

strategies present a very acceptable failure rate with regard to classical ones
(SIR).3

5.2.5. Bias

The bias norm is presented in Figs. 12 and 13(d). We notice that bias values are5

higher than in a synthetic context, showing that inadequacy of our models (human,
measurement cues) significantly degrades the filter behavior. APF globally seems7

to have a lower bias than the other strategies. The bias limit when N → ∞ would
fix the physical limit below which any filter would never achieve.9

Finally, Table 7 sums up this evaluation against all the proposed criteria,
keeping in mind that results may vary according to the movement type. We11

notice however that relative behaviors of the filter are independent of the num-
ber of particles. Thus, this table informs us about intrinsic properties of the13

filters.

Table 7. Sorting of the different strategies according to each criteria.

Name Accuracy Dispersion Failure Rate Bias

CONDENSATION 5 5 5 5
QRS 4 4 4 4
PARTITIONED 3 3 2 3
PARTITIONED QRS 2 1 2 1
APF 1 2 1 2
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5.2.6. Particles and efficiency1

Figures 15(a)–15(e) show the mean error (RMSE) for tracking sequence (1) with a
varying number of particles for each filtering scheme. We see that — of course —3

the tracking is more accurate for a growing number of particles, but also that the
trackers seem to converge towards an error which is not zero. This means that our5

likelihood function does not present a maximum for the real human pose whatever
the chosen filtering strategy. This is due to our inaccurate models of the human7

body and measurement functions and it is consistent with our bias evaluations.
Moreover, we see that there seems to exist a maximum number of particles above9

which the tracking is not improved.
Additionally, Fig. 15(f) presents the number of tracking failures for each strat-11

egy depending on the number of particles in log-scale. SIR family strategies present
an exponential complexity to achieve a lowest error with regard to the number of13

particles, and not a linear one as this can be the case in simpler contexts.5 PAR-
TITIONED and APF have less than exponential complexity. Our system actually15

performs in 1 fps on a Pentium IV 3 GHz while any vision-based approach based
on particle filtering is far from real time: 0.02 fps in Ref. 3, 0.03 fps in Ref. 16,17

0.07 in Ref. 8. One limiting issue for such approaches is clearly the computational
challenge of processing full video streams.19

To sum up, it emerges that PARTITIONED QRS strategy is seldom exploited
in the literature but provides results as good as the APF. Given our evaluations,21

these two algorithms outperform the other strategies. In the next section, we study
the behavior of APF in a real human environment with various subjects.23

5.3. Qualitative evaluations for real surveillance video application

The previous evaluations have been made in using a commercial HMC context, i.e.25

in a clear dedicated room in order to obtain the ground truth in the best conditions.
Moreover, we have assessed the algorithms performance on a single subject. To27

complete this quantitative study, we propose in this section a few analyses on three
subjects evolving in a 4×3 m working area in a real indoor environment surveillance29

context. Some representative results are shown in Figs. 16 and 17. We only show
images from two of the three cameras for lack of space.31

Three Firewire Point Grey color cameras Flea 2 have been mounted in our
robotic hall in order to assess tracking in a human indoor context. 640× 480 pixel33

images are acquired at 6 Hz and algorithms are run offline.
Figure 16 presents images from a walk and gym movement performed in such35

an environment. The tracking is performed with an APF involving 500 particles
and three layers. We notice that the tracking performs well, yet, the localization of37

the feet seems less accurate than the one of the hands. This confirms our previous
results. Tracking seems quite repeatable on different runs.39

Figure 17 shows another walking subject who crosses the scene to take a
book and read it. Occlusion of hands occur during the sequence but the tracker41
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Fig. 15. Mean error of each filtering scheme for different number of particles: (a) SIR,
(b) PARTITIONED, (c) APF, (d) QRS, (e) PARTITIONED QRS. (f) presents the number of
tracking failures with respect to the number of particles in a log-scale.
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Fig. 16. Pairs of snapshots from a sequence of walking and gym movement performed in a natural
human centered environment.
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Fig. 17. Pairs of snapshots from a sequence of walking and reading with a different subject.

still performs well. However, the performance is a bit degraded when the sub-1

ject approaches the border of the working area, but the target is locked again as
he returns back. In addition, we notice that despite clothes being different on the3

above sequences, the tracker is not disturbed. The only condition our measurements
impose is that the subject must wear long sleeved clothes. Our system is then robust5

to different subjects, even if, as is the case in this sequence, morphology is slightly
different.7

Generally speaking, we notice that tracking is correct as soon as a good segmen-
tation of the silhouette is performed, which confirms the results in Ref. 3. However,9

as we exploit skin segmentation, performances are degraded when the subject does
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not present hands or face on at least one camera. The results obtained with PAR-1

TITIONED QRS strategy are visually similar to the ones obtained with APF,
confirming that both consitute an interesting choice.3

6. Conclusion and Future Works

This study aims to present an overview of the characteristics of some well-known5

particle filters. Four metrics have been set up to assess behaviors of the algorithms
on synthesis sequences as well as real ones. Many conclusions have been deducted7

from those experiments.
Though behaviors of the filters are expected in friendly contexts (such as syn-9

thetic sequences), real sequences seem more complex to analyze and to understand,
as some movements possibly spoil filter relative efficiency. Hence, one has to be very11

careful while comparing particle filters; the more “advanced” algorithms are not
always better in practice. However, APF provides good results, and PARTITIONED13

strategies may be disturbed by relying on an inadequate likelihood function. Indeed,
results should be enhanced with “labeling cues” enabling a more efficient mining of15

the image, but such measurements are difficult to set up in practice.
In addition, the average error is not the only criterion we must look at, as17

in our stochastic context, variance of the estimates must be taken into account.
The number of tracking failures is influenced by both mean error and variance19

of the estimates in such a way that a scheme providing a worse error but a better
variance than another can be of better interest in some contexts. With regard to this21

criterion, QMC strategies seem to provide an interesting way to explore, while they
are not used much in tracking problems. In real context application, APF strategy23

performs well even for various subjects with a rough body model. However, foot
localization may be poor due to segmentation errors, and specific measurements25

such as hand localization improve tracking results.
Obviously, trackers are sensitive to the chosen strategy, but a lot of work still27

has to be done on measurements, since if the filtering algorithm can enable a
faster convergence according to the strategy or the number of particles, the limit29

of this convergence is defined by the chosen measurement. In other words, mea-
surements control the point of convergence and filter strategies control the speed31

of convergence. If measurements are not well appropriate (due to a difficult con-
text or rough models), no strategy will ever provide a good result. To endorse this33

idea, it appears that choosing likelihood functions focused also on end points of the
kinematic chains have been proven to improve tracking significantly (hand positions35

are more precise than foot ones). Thus, designing likelihood functions must be done
very carefully, under penalty of severely damaging filter results.37

Regardless of these assumptions, further investigations will concern the tuning
of the filter parameters. To our knowledge, no study tries to tackle the “σ-problem”39

which is one of the most difficult of the particle filter use. Influence of these variables
should be tested to fully exploit particle filter possibilities. In a similar way, the41
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number of layers and/or partitions of “advanced” strategies also constitutes a strate-1

gic choice and deserves a more complete study.
To expand this study, one should also take a look at importance sampling strate-3

gies, which takes into account the image while processing particle exploration of the
state space. With a perspective to achieving real-time robust tracking, reducing the5

number of particles and setting up automatic re-initialization seem to constitute
the key points especially in even more difficult contexts such as robotics. Indeed,7

in such a context, very informative measurements such as background segmenta-
tion may be compromised as embedded cameras are able to move. Additionally,9

the background can be very cluttered and lighting conditions may vary. All those
characteristics undoubtedly influence tracking results, and also deserve a complete11

study.

Acknowledgments13

The authors thank Ms. Caroline Carvalho for generating all the synthesis images.
This work was partially conducted within the french ANR project AMORCES.15

References

1. P. Azad, A. Ude, T. Asfour and R. Dillmann, Stereo-based markerless human motion17
capture for humanoid robot systems, Int. Conf. Robotics and Automation (ICRA’07),
Roma, Italy, 2007, pp. 3951–3956.19

2. A. Balan, M. J. Black, H. Haussecker and L. Sigal, Shining a light on human pose: on
shadows, shading and the estimation of pose and shape, Int. Conf. Computer Vision21
(ICCV’07), Rio de Janeiro, BRAZIL, October 2007.

3. A. Balan, L. Sigal and M. Black, A quantitative evaluation of video-based 3D person23
tracking, Int. Workshop on Visual Surveillance and Performance Evaluation of Track-
ing and Surveillance (VS-PETS’05), Washington, USA, October 2005, pp. 349–356.25

4. Z. Chen, Bayesian filtering: from Kalman filters to particles filters, and beyond, avail-
able on http://www.math.u-bordeaux.fr/∼delmoral/chen bayesian.pdf, 2003.27

5. F. Daum and J. Huang, Mysterious computational complexity of particle filters, Signal
and Data Processing of Small Targets, Proc. SPIE, Vol. 4728, Bellingham, MA, USA,29
August 2003.

6. Q. Delamarre and O. Faugeras, 3D articulated models and multi-view tracking with31
physical forces, Comput. Vis. Imag. Underst. 81(3) (2001) 328–357.

7. J. Deutscher, A. Blake and I. Reid, Articulated body motion capture by annealed33
particle filtering, IEEE Conf. Computer Vision and Pattern Recognition (CVPR’00),
Vol. 2, Hilton Head Island, South Carolina, USA, 2000, pp. 126–133.35

8. J. Deutscher, A. Davison and I. Reid, Automatic partitioning of high dimensional
search spaces associated with articulated body motion capture, IEEE Conf. Computer37
Vision and Pattern Recognition (CVPR’01), Kauaii Marriott, Hawaii, USA, 2001,
pp. 669–676.39

9. J. Deutscher and I. Reid, Articulated body motion capture by stochastic search, Int.
J. Comput. Vis. 21(3) (2005) 185–205.41

10. A. Doucet, N. De Freitas and N. J. Gordon, Sequential Monte Carlo Methods in
Practice, Series Statistics For Engineering and Information Science (Springer-Verlag,43
New York, 2001).



1st Reading

October 3, 2009 19:44 WSPC/115-IJPRAI SPI-J068 00766

34 M. Fontmarty, P. Danès & F. Lerasle

11. A. Doucet, S. Godsill and C. Andrieu, On sequential Monte-Carlo sampling methods1
for Bayesian filtering, Stat. Comput. 10(3) (2000) 197–208.

12. K.-T. Fang, Y. Wang and P. M. Bentler, Some applications of number-theoretic meth-3
ods in statistics, Stat. Sci. 9(3) (1994) 416–428.

13. D. M. Gavrila, The visual analysis of human movement: a survey, Comput. Vis. Imag.5
Underst. 73(1) (1999) 82–98.

14. D. Guo and X. Wang, Quasi-Monte Carlo filtering in nonlinear dynamic systems,7
IEEE Trans. Sign. Process. 54(6) (2006) 2087–2098.

15. A. Gupta, T. Chen, F. Chen, D. Kimber and L. S. Davis, Context and observation9
driven latent variable model for human pose estimation, IEEE Conf. Vision and
Pattern Vision Recognition (CVPR’08), June 2008.11

16. A. Gupta, A Mittal and L. S. Davis, Constraint integration for efficient multiview pose
estimation of humans with self-occlusions, Trans. Patt. Anal. Mach. Intell. (PAMI’08)13
30(3) (2008) 493–506.

17. M. Isard and A. Blake, Contour tracking by stochastic propagation of conditional15
density, European Conf. Computer Vision (ECCV’96), Cambridge, UK, April 1996,
pp. 343–356.17

18. M. Isard and A. Blake, I-CONDENSATION: Unifying low-level and high-level track-
ing in a stochastic framework, European Conf. Computer Vision (ECCV’98), Freiburg,19
Germany, 1998, pp. 893–908.

19. S. Knoop, S. Vacek and R. Dillman, Sensor fusion for 3D human body tracking with an21
articulated 3D body model, Int. Conf. Robotics and Automation (ICRA’06), Orlando
(USA), May 2006, pp. 1686–1691.23

20. J. Lichtenauer, M. J. T. Reinders and E. A. Hendriks, Influence of the observation like-
lihood function on particle filtering performance in tracking applications, Automatic25
Face and Gesture Recognition (FGR’04), Seoul, KOREA, May 2004, pp. 767–772.

21. J. MacCormick and M. Isard, Partitioned sampling, articulated objects, and interface-27
quality hand tracking, European Conf. Computer Vision (ECCV’00), Dublin, Ireland,
2000, pp. 3–19.29

22. P. Menezes, F. Lerasle and J. Dias, Data fusion for 3D gesture tracking using a camera
mounted on a robot, Int. Conf. Pattern Recognition (ICPR’06), Vol. 1, Hong-Kong,31
August 2006, pp. 464–467.

23. T. Moeslund, A. Hilton and V. Krüger, A survey of advanced vision-based human33
motion capture and analysis, Comput. Vis. Imag. Underst. (CVIU’06), 104 (2006)
174–192.35

24. H. Moon and R. Chellappa, 3D shape-encoded particle filter for object tracking and
its application to human body tracking, EURASIP J. Imag. Vid. Process. 2008.37

25. L. Mündermann, S. Corazza and T. P. Andriacchi, Accurately measuring human
movement using articulated ICP with soft-joint constraints and a repository of artic-39
ulated models, IEEE Conf. Computer Vision and Pattern Recognition (CVPR’07),
June 2007, pp. 1–6.41

26. K. Ogawara, X. Li and K. Ikeuchi, Markerless human motion estimation using articu-
lated deformable model, Int. Conf. Robotics and Automation (ICRA’07), Roma, Italy,43
2007, pp. 46–51.

27. D. Ormoneit, C. Lemieux and D. J. Fleet, Lattice particle filters, Proc. 17th Conf.45
Uncertainty in Artificial Intelligence (UAI’01), San Francisco, CA, USA, 2001,
pp. 395–402.47
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