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Abstract— This paper presents a new algorithm for human
motion three-dimensional tracking based on a stereo camera
system embedded on a mobile robot. The approach mixes ad-
vantages of the well-knownICONDENSATION and Annealed
particle filters into a more reliable “I-Annealed” particle filter
based tracker. Data fusion is also studied to show that a wide
variety of visual cues must be used so that the system can adapt
to various backgrounds. A complete implementation of the
proposed tracker is described as well as some results on indoor
sequences. Finally, evolutions and future work are discussed.

I. I NTRODUCTION AND FRAMEWORK

A major challenge of Robotics is undoubtedly the personal
robot, with the perspective for such an autonomous mobile
platform to serve humans in their daily life. Embedding hu-
man motion capture (HMC) systems thanks to conventional
cameras mounted on a robot would give it the ability to (i) act
in a socially and human aware way, (ii) communicate with
humans thanks to a natural and rich means.

Besides, 3D tracking from a mobile platform is a very
challenging task, which imposes several requirements. First,
the embedded sensors are positioned close to each other
and so cover a narrow field of view comparatively to multi-
ocular systems. As the robot’s evolution takes place within
a wide variety of environmental conditions, background
modeling techniques [5], [15], [16] are precluded and the
tracker gets inevitably faced with ambiguous data. Moreover,
frequent occurrences of mutual occlusions between limbs re-
quire automatic (re-)initialization procedures. Clearly, several
hypotheses must be handled simultaneously, and a robust
integration of multiple visual cues is necessary. Finally,
onboard processing power is limited and care must be taken
to design computationally efficient algorithms.

Like many researchers in the Vision community, we aim
at investigating markerless human motion capture systems
based on vision techniques. Most of the existing approaches
have concentrated on 3D articulated models of the tracked
human limbs in order to make the problem more tractable
(see a survey in [11]). They essentially differ in the sensor
setup and the associated data processing so that two main
classes can be exhibited, namely 3D reconstruction and
appearance based approaches. The former ones try to fit
the articulated model on the 3D-point cloud issued from a
3D-sensor system,e.g. a stereo head [3], [18] or a Swiss
Ranger [9]. On the other hand, the appearance-based ap-
proaches infer the model configuration from its projection in
monocular [10], [14], [16] or multi-ocular [5], [15] image
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FRANCE and Universit́e Paul Sabatier, 118 route de Narbonne, 31062
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sequences. These last strategies enable the derivation of
abundant appearance information from the image contents,
yet they may misestimate the motion-in-depth. This is so
when using a single camera, or even a short-baseline stereo
camera setup such as these widely used in mobile robotics.

Our challenge is to design a human motion capture system
which copes with the above robotics requirements. Our
observation model is based on a robust and probabilistically
motivated integration of multiple cues. Thus, fusing 3D and
2D (image-based) information from the video stream of a
stereo head—with cameras positioned at a distance of30
centimeters—should enable to benefit both from reconstruc-
tion and appearance-based approaches.

Regarding the estimation process, Monte Carlo simulation
methods, also known as particle filters [6] have proved
well suited to our context. Indeed, they make no restrictive
assumption on the probability distributions entailed in the
characterization of the problem, and permit an easy fusion
of diverse kinds of measurements. The main drawback for
conventional particle filters remains the number of required
particles which increases exponentially with the state-space
dimensionality. Search space decomposition techniques [5],
[2] undoubtedly enable to tackle this problem, yet global
view strategies are often favored to determine the correct
configuration. The Annealed Particle Filtering (APF), pi-
oneered by Deutscheret al. in [4]—though with a much
simplified observation model in a non-robotics context—is
another way to address this difficulty.

In this paper, theAPF is improved and extended in
two ways. First, this framework together with the afore-
mentioned data fusion principle can decrease the effec-
tive search space, through a multiple cue based likeli-
hood function with gradually narrowing peaks. The second
line of investigation concerns automatic (re-)initialization.
When traditional PF algorithms loose track—as is always
the case in cluttered scenes—the dimensionality of the
state space makes any recovery difficult. Consequently, re-
initialization is not straightforward. Feature detectorswithin
the ICONDENSATION framework [8] do address this
problem, but as far as we know this strategy has been
exclusively devoted to 2D tracking. If one could detect some
body parts then inverse kinematics could be used to solve
for the model 3D pose (re-)initialization. We thus propose
a modified APF (termed IAPF) which incorporates the
prominent properties of anICONDENSATION algorithm.

The paper is organized as follows. Section II first briefly
summarizes theAPF algorithm and describes the amended
version to account for diverse kinds of measurements. Then
section III specifies these 3D or image-based cues. Sec-



tion IV describes our setup and associated evaluations. Last,
section V summarizes our contribution and puts forward
some future extensions.

II. A NNEALED PARTICLE FILTER FOR DATA FUSION

A. The APF algorithm

Like all other particle filters, the Annealed Particle Filter
(APF) algorithm is a Monte Carlo method dedicated to
the recursive estimation of the state vector of a Markovian
stochastic system. Its aim is to approximate the posterior
probability p(xk|z1:k) of the state vectorxk at time k
conditionally to the measurementsz1:k = z1, . . . , zk by a
point-mass distribution :

p(xk|z1:k) ≈
N∑

i=1

w
(i)
k δ(xk − x

(i)
k ),

N∑

i=1

w
(i)
k = 1,

which represents the selection of a value—or particle—
x

(i)
k with probability—or weight—w

(i)
k , i = 1, . . . , N . The

posterior conditional mean of any function ofxk, e.g. the
Minimum Mean Square Error (MMSE) estimateE[xk|z1:k],
immediately follows.

Consider a system of statexk, whose dynamics and obser-
vation density can respectively be described byp(xk|xk−1)
andp(zk|xk). The basicAPF scheme is presented in table I
where the “Strategy” parameter must take the value “APF”.
The main idea is to split the classicalCONDENSATION
[1] main loop into L layers. Each stagel ∈ {1, . . . , L}
processes the set of particles computed by the previous
level. It applies a “layer dynamics function”pl(xk,l|xk,l−1)

to samplesx
(i)
k,l−1, then focusses the resulting particles

in regions where a “layer likelihood function”pl(zk|xk,l)
presents high values. The main idea is to define these
functions smartly enough in order to improve the results of
a classicalCONDENSATION in high dimension spaces.
Deutscheret al. in [4] propose to select

pl(xk,l|xk,l−1) = [p(xk|xk−1)
αl ]xk=xk,l;xk−1=xk,l−1

pl(zk|xk,l) = [p(zk|xk)βl ]xk=xk,l

whereαl ∈ [1,+∞) andβl ∈ [0, 1] are increasing sequences
of parameters. Hence, asl grows, αl increases, and the
state space exploration becomes sharper. Meanwhile the
coefficientsβl increase, and while the first layers use a very
smoothed likelihood function (βl is small), the last layers
use a potentially peaked one (βl tends towards1).

Sampling fromp(xk|xk−1)
αl may not be trivial. How-

ever, in our context, since we use a random walk dy-
namics p(xk|xk−1) = N (xk−1,∆k) with ∆k diagonal,
sampling fromp(xk|xk−1)

αl is equivalent to sampling from
N (xk−1,

1
αl

∆k).

B. The amended APF algorithm

The extendedAPF algorithm we propose is inspired from
the ICONDENSATION [8]. The main idea is to explore
the state space using an importance functionq(xk|xk−1, zk)
in place of the system dynamicsp(xk|xk−1). As the initial
particle cloud is sharpened within each layer of theAPF,
the importance sampling is introduced only in the first layer.
The algorithm is presented in table I with the parameter

“Strategy” taking the value “IAPF”. The use of importance
sampling enables self-initialization or reinitialization in case
of target loss, which must be taken in account in our mobile
robotics context. The importance functionq(xk|xk−1, zk) we
use in our amended APF involves both measurements and
dynamics, such as the classicalICONDENSATION does.

We must notice that, as is the case for theAPF, whose
authors say “its only disadvantage is not being able to
work in a robust Bayesian framework” [4],IAPF is not a
mathematically sound Monte Carlo method.

III. D ESCRIPTION OF THE CUES

The importance functionq(.) generally involves discrim-
inant but possibly intermittent visual cues1 while measure-
ment functionsp(zk|xk) involve cues which are persistent
yet proner to ambiguity for cluttered scenes [12]. Fusing
several cues confers robustness w.r.t temporary failures in
some of the measurement processes. The next subsections
describe our importance function followed by our multiple
cues based measurement function.

A. Importance function

We sampleα percent of the particles according to the
dynamics,β percent according to the measure and the last
ones according to the priorp(x0). The particles sampled
from the measure are drawn from a Gaussian distribution
centered on a configurationxD

k computed from 3D positions
of head and hands thanks to an analytical Inverse-Kinematics
(IK) algorithm. These features are extracted by skin color
blob segmentation, then matched in the image pair. 2D blob
matching procedure is based upon criteria defined in [13,
Chap. 4]. The centroids of the matched regions are finally
triangulated using the parameters of the calibrated stereo
setup. Thus, hands and head can be understood as three
natural markers.

Samplingx according toq(xk|xk−1, zk) is then analogous
to drawingu ∼ U(0, 1) and then sampling:

• x ∼ p(xk|xk−1) if u < α
• x ∼ N (xD

k ,∆k) if α ≤ u < α + β
• x ∼ N (x0,∆k) if u ≥ α + β

where∆k is a covariance matrix. In our context, it is the
same matrix as the system dynamics covariance.

B. Likelihood sub-functions

1) Edge distance: This likelihood requires the projection
of the 3D model and the removal of its hidden parts. The
shape related likelihood is classically computed using the
sum of the squared distances between model points and
the nearest image edges. TheseNp measurement points
pi, i ∈ {1, . . . , Np} for a configurationxk are chosen to be
uniformly distributed along the model projected segments.
In this implementation, the edge image is converted into a
Distance Transform image, notedIDT , which is used to pick
the distance value [7]. This likelihood is given by

p(ze
k|xk) ∝ exp

(
−

D2

2σ2
e

)
, D =

1

Np

Np∑

i=1

IDT (pi),

1due to occlusions or mis-segmentation in our case.



[{x
(i)
k

, w
(i)
k

}]
N

i=1
= APF([{x

(i)
k−1, w

(i)
k−1, }]

N

i=1
, zk, Strategy)

1: IF k = 0, Samplex
(1)
0 , . . . , x

(i)
0 , . . . , x

(N)
0 i.i.d. according top(x0), and setw(i)

0 = 1
N

. Setα1, . . . , αL ∈ [1, +∞) the increasing dynamics function exponents
andβ1, . . . , βL ∈ [0, 1] the increasing likelihood functions exponents.END IF

2: IF k ≥ 1 THEN {—[{x
(i)
k−1, w

(i)
k−1}]

N

i=1
describes a particle approximation ofp(xk−1|z1:k−1)—}

3: Set [{x
(i)
k,0, w

(i)
k,0}]

N
i=1 = [{x

(i)
k−1, w

(i)
k−1}]

N
i=1

4: FOR l = 1, . . . , L, DO
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TABLE I

APF FRAMEWORK.

wherei indexes theNp model points,IDT (pi) is the asso-
ciated value in the DT image, andσe the a priori standard
deviation of our Gaussian measure model.

2) ROI color histograms distance: Clothes colors create
a clear distinction between the limbs (feet, trunk of sleeves,
. . . ) of the observed person. So, the use of clothing patches
of characteristic color distributions seems very promising.
NROI reference color models are associated with these
targeted ROIs. Then, the histogram distance is written

p(zROI
k |xk) ∝ exp

(
−

D2

2σ2
ROI

)
,

D =
1

NROI

NROI∑

i=1

(DB(hxk,i, href,i))

where DB is the Bhattacharyya distance used to compare
the normalized histograms(href,i, hxk,i). The histograms
appearances,i.e. the histogramshref,i, are learned on the
first image of the sequence.

3) 3D blob distance: In the vein of our importance
function q(.), this measure involves the 3D positionŝPj =
(Xj , Yj , Zj)

′

of the person hands and head (j ∈ {1, 2, 3})
after triangulation. We define :

p(z3d
k |xk) ∝ exp

(
−

D2

2σ2
3d

)
,D =

1

3

3∑

i=1

DE(Pxk,i, P̂ji
),

whereDE(Pxk,i, P̂ji
) is the Euclidean distance between the

mass center̂Pji
of blob ji (ji ∈ {1, . . . , NBlob}) andPxk,i

the 3D position of a hand or the head of the model under
hypothesisxk. Link betweeni and ji is done by a simple

heuristic involving 3D position of detected blobs and a face
detector [17].

4) Skin color distance: In some cases, we cannot triangu-
late the3D positions of hands and head (not enough detected
blobs, triangulation error too high, . . . ). Consequently,3D
information cannot be exploited. Nevertheless, we can still
use the skin color segmented imageIS and define a new
color-based likelihoodp(zs

k|xk). For a given statexk, the
2D coordinatespxk,i, i ∈ {1, . . . , 3} of hands and head
after model projection are supposed to be in skin color high
probability areas, so that one can define

p(zs
k|xk) ∝ exp

(
−

D2

2σ2
s

)
,D =

1

3

3∑

i=1

(1 − IS(pxk,i)).

5) Homogeneous color distance: This measure usesNm

disjoints setsEi, i ∈ {1, . . . , Nm} of uniformly sampled
points inside each of theNm projected body members for a
configurationxk.

We suppose the tracked person wears a cloth with a
homogeneous color on each limb. We then use the following
measure, withσEi,c the standard deviation of the color
distribution on channelc ∈ {R,G,B} associated to point
setEi of memberi :

p(zm
k |xk) ∝ exp

(
−

D2

2σ2
m

)
,

D =
1

Nm

Nm∑

i=1



1

3

∑

c∈{R,G,B}

σEi,c



 .



(a) (b) (c) (d) (e) (f)

Fig. 1. Distance evolution regarding the position of a1-DOF arm on clear
and cluttered backgrounds. Figures (b), (c), (d), (e) and (f) respectively
show distances relative to edges, ROI histograms,3D blobs, skin color and
uniform color on limbs. Red and blue lines respectively represent the ground
truth (set manually) and the filter MMSE.

C. Cues study and discussion

The above measurements are assumed mutually indepen-
dent conditioned on the state, so that the global measurement
function factorizes as :

p(zk|xk) = p(ze
k, zROI

k , z3d
k , zs

k, zm
k |xk)

= p(ze
k|xk)p(zROI

k |xk)p(z3d
k |xk)p(zs

k|xk)p(zm
k |xk)

Fig. 1 plots the distances obtained by sweeping a subspace
of the configuration space formed by the orientation of the
model right arm involving moderate or heavy background
clutter. These plots bring out that appearance based measures
are less discriminant than the ones involving 3D information
(Fig. 1 (d)). In cluttered background, edge distance measure
is not sufficiently discriminant as multipleminima are present
(b) while color histograms on ROIs are quite robust to
background clutter (c), but still very sensitive to illumination
changes. The skin probability measure (e) is extremely sharp
but shows some false positives as soon as spurious skin color
like regions are detected. Color uniformity (f) performs well
in a cluttered background if the tracked person wears a single
color shirt, but very poorly otherwise.

Moreover, we can notice that among all of the cues
presented above, no assumption has been made on the fact
that the robot must not move, that is, trackers can perform
well even if the scene background changes due to a robot
motion (as long as this displacement is consistent with the
system dynamics).

IV. SYSTEM SETUP

A. Implementation and associated architecture

We use a human model based on truncated cones, even
if boxes are prefered for3D visualization as they provide a
better way to see rotations. It uses14 degrees of freedom :
6 for global localization,3 rotations for each shoulder and
1 for each elbow. The head is supposed to be rigidly linked
with the torso.

The software architecture is presented on fig. 2. We have
chosen to set up5 main modules :

• The image preprocessing module is in charge of a few
standard tasks in order to obtain a good base image
to work on. First, the module converts the raw data
acquired from two mono-CCD stereo fire-wire cameras

Fig. 2. Software architecture of the tracking module.

to RGB images. Then a white balance is applied, and
the image is conveniently resized.

• The image processing stage computes various images
to be used by the measure module. The first of them is
the distance imageIDT , obtained by applying a distance
transform on an edge image computed by a Canny edge
detector. The module also computes a skin color image
IS , by back-projecting an off-line learned skin region
histogram. These ones are used to triangulate the3D
position of head and hands. A face detector is also
implemented among various other functionalities.

• The filtering module implements some classical particle
filter schemes, among which aCONDENSATION,
an ICONDENSATION, an APF, and our amended
version of the latest :IAPF. The filters based on an
importance function use data from the IK algorithm to
draw samples from the measure. This stage provides
the output from the global tracking system,i.e. the
estimated3D configuration of the person.

• The measure module is in charge of particle likelihood
evaluations. For each particle of the chosen filtering
strategy, it computes the distances presented in III-
B, using some of the images computed by the image
processing module.

• The IK algorithm computes a3D configuration of the
human body model from head and hand detections
provided by the image processing module when these
ones are available. The computed configuration is the
nearest one to a given rest position.

B. Evaluations and discussion

Our IAPF-based tracker was tested on a number of
challenging sequences, acquired from the robot, of human
movement including temporary occlusions, jumps in the
dynamic, heavy or moderate cluttered backgrounds. Refer
to the URLwww.laas/∼mfontmar for more videos and
images. The current processing rate ranges from1 Hz to
4 Hz on a1.8 GHz Pentium IV Centrino personal computer.
We saw that by using both our importance and multiple
cues measurement functions, we could reduce the size of
the search space. This reduction of search space allows
to limit drastically the required number of particles within
[200; 1000]. The IAPF andAPF we set up use3 layers.

1) Accuracy: Accuracy in our context is very difficult to
evaluate since we are not able to have access to a precise
ground truth. That’s why we first tested our tracker perfor-
mance on synthetic data. Results are presented on figure
4. Since algorithms take place in a stochastic framework,
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Fig. 3. ICONDENSATION andIAPF runs on two different sequences (up and down). Left plots show the error (Euclidean square distance) between
estimates of each filter and the ground truth. For each plot, right sequences show theICONDENSATION and IAPF runs.
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we launched15 runs of different filtering strategies, among
which theIAPF one, for a linear Gaussian stochastic system
using random walk dynamics. We then plot the mean error
to ground truth for a state space of dimension10. We can
see that ourIAPF strategy performs as well as theAPF,
and better than well-knownICONDENSATION and SIR.
We noticed an average error reduction of70 % for the IAPF
with respect toICONDENSATION.

In our visual tracking context, it seems that ourIAPF
gives at least similar results toICONDENSATION, and, in
some tricky cases, better ones. Once again,15 runs of each
filter have been performed on the same data to evaluate the
mean behavior of each tracker. The fig. 3 shows the distance
between a ground truth built “by hand” and the estimates
provided byICONDENSATION and IAPF trackers on a

Name Description Value
(W, H) Image size (640, 480)

N Number of particles 600
Nlayers APF layer number 3

(α1, α2, α3) Dynamics exponents (1, 4, 25)
(β1, β2, β3) Likelihood exponents (0.1, 0.4, 1)

(α, β) q(.) parameters (0.8, 0.2)
(σe, σROI , σ3D,

σs, σm)
Likelihood parameters

(10, 0.3, 0.15,
0.02, 10)

p(xk|xk−1) Dynamics N (xk−1, ∆k)

TABLE II

PARAMETERS VALUES USED IN THE TRACKERS

few sequences representative of the mean behavior of the
filters. We noticed the error to ground truth is lowered from
0 to 15 degrees in rotations.

Nevertheless, those latest data must be handled carefully.
For more reliable results, one should use a commercial HMC
system, what we are not able to do at the moment.

2) Robustness: The main advantage of ourIAPF over
APF in our high dimension state tracking context is the
possibility to initialize or re-initialize automatically— and
so aid recovery from transient tracking failures —, which
frees the tracker from the classical “by hand” initialization,
as a detection of head and hands is enough to induce a
3D configuration of the model. We can even add more
constraints to be sure that reference histograms are acquired
correctly, e.g. the person must face the camera and have
straight arms. A short sequence showing theIAPF-based
tracker (re-)initialization is presented on fig 5. In these
sequence, no prior draw is used.

3) Computation time: In all tests presented in this pa-
per, ICONDENSATION has been run usingN particles,
while IAPF and APF has been run usingNL layers and
N/NL particles. This choice is justified by the limited CPU



Fig. 5. From left to right and from top to down : the tracker is initialized
with a default configuration which does not make sense as nobody is present.
The tracker diverges. Head and hands detections enable to build a basic
configuration near from the real one to initialize the particle cloud : the
initialization succeeds.

resources we have : by choosing this ratio between particles
and layers, all strategies use the same time to perform one
iteration. Hence we can compare results for a given CPU
resource. This also means that for same accuracy results,
one should use less particles withIAPF strategy than with
ICONDENSATION.

4) Material considerations: In its actual form, our tracker
performs on640 × 480 pixel images. Most of the time
consumption — about200 ms — is spent in image pro-
cessing and preprocessing (conversion from Bayer to RGB,
skin probability computations, distance image, . . . ), and we
hope to optimize this step. Furthermore, we could improve
the tracker frequency by reducing the image size. A few
parameter values used for the main sequences presented here
are shown in table II. Most of them have been set up by
experimenting different values, sometimes guided by simple
heuristics.

V. CONCLUSION

This paper presents a fully automatic approach for tracking
the upper human body parts in 3D. Two lines of inves-
tigations have been pursued. First, we endow theAPF
with the nice properties ofICONDENSATION scheme.
This amendedAPF is shown to efficiently track articulated
body motion and automatically recover from transient target
loss or occlusion. In addition, it is more accurate than
ICONDENSATION scheme for the same computation time.
Second, data fusion principle is shown to improve the tracker
versatility and robustness to clutter. Combined with today’s
powerful off-the-shelf PCs, such quasi real-time HMC ap-
proach devoted to mobile robot nearly becomes a reality and
would have a great number of robotics applications.

While our results are promising, further investigations
regarding implementation and evaluation are postponed to
future research. Our strategy is based on simple detectors
dedicated to specific features. Hands are segmented by color
while head detection is based on Adaboost [17] which proves

faster and more robust than color segmentation. Such ma-
chine learning methods will be extended to other limbs [15]
in order to provide additional “initialization” cues. To our
belief, the difference with conventional particle filters would
be more significant if we had better part detectors. Next,
our observation model will be enriched with sparse stereo-
correlation data. Further evaluations will be also performed
using a motion capture testbed that provides more accurate
“ground truth” from a commercial HMC system, such as
VICON, that will be synchronized with the video streams.
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