Data Fusion within a modified Annealed Particle Filter dedicded to
Human Motion Capture

Mathias Fontmarty, Fcéric Lerasle and Patrick Das

Abstract— This paper presents a new algorithm for human sequences. These last strategies enable the derivation of
mottion threbe-gidmgnsional tffg_(ikingbb?S?g on a sterheo _Cameréi abundant appearance information from the image contents,
system embedded on a mobile robot. The approach mixes ad- ; ; . e
vantages of the well-knownICONDENSATION and Annealed yet they_may m|sest|mate the motion-in-depth. Th.ls IS SO
particle filters into a more reliable “I-Annealed” patrticle filter when using a single camera, or even a short—ba;ellne st(_areo
based tracker. Data fusion is also studied to show that a wide Camera setup such as these widely used in mobile robotics.
variety of visual cues must be used so that the system can adapt
to various backgrounds. A complete implementation of the  Our challenge is to design a human motion capture system

proposed tracker is described as well as some results on indoor which copes with the above robotics requirements. Our
sequences. Finally, evolutions and future work are discussed. gphservation model is based on a robust and probabilisticall
motivated integration of multiple cues. Thus, fusing 3D and
2D (image-based) information from the video stream of a
A major challenge of Robotics is undoubtedly the personaitereo head—with cameras positioned at a distancg0of
robot, with the perspective for such an autonomous mobilentimeters—should enable to benefit both from reconstruc-
platform to serve humans in their daily life. Embedding hution and appearance-based approaches.
man motion capture (HMC) systems thanks to conventional Regarding the estimation process, Monte Carlo simulation
cameras mounted on a robot would give it the ability to (i) acinethods, also known as particle filters [6] have proved
in a socially and human aware way, (i) communicate witlwell suited to our context. Indeed, they make no restrictive
humans thanks to a natural and rich means. assumption on the probability distributions entailed ie th
Besides, 3D tracking from a mobile platform is a verycharacterization of the problem, and permit an easy fusion
challenging task, which imposes several requirementst,Firof diverse kinds of measurements. The main drawback for
the embedded sensors are positioned close to each othenventional particle filters remains the number of require
and so cover a narrow field of view comparatively to multiparticles which increases exponentially with the statseep
ocular systems. As the robot’s evolution takes place withidimensionality. Search space decomposition techniqules [5
a wide variety of environmental conditions, background2] undoubtedly enable to tackle this problem, yet global
modeling techniques [5], [15], [16] are precluded and theiew strategies are often favored to determine the correct
tracker gets inevitably faced with ambiguous data. Moreoveconfiguration. The Annealed Particle FilterindKF), pi-
frequent occurrences of mutual occlusions between limbs reneered by Deutschest al. in [4]—though with a much
guire automatic (re-)initialization procedures. Cleasigveral simplified observation model in a non-robotics context—is
hypotheses must be handled simultaneously, and a robastother way to address this difficulty.
integration of multiple visual cues is necessary. Finally, In this paper, theAPF is improved and extended in
onboard processing power is limited and care must be takéno ways. First, this framework together with the afore-
to design computationally efficient algorithms. mentioned data fusion principle can decrease the effec-
Like many researchers in the Vision community, we ainiive search space, through a multiple cue based likeli-
at investigating markerless human motion capture systerhsod function with gradually narrowing peaks. The second
based on vision techniques. Most of the existing approachise of investigation concerns automatic (re-)initiatina.
have concentrated on 3D articulated models of the track&hen traditional PF algorithms loose track—as is always
human limbs in order to make the problem more tractabldhe case in cluttered scenes—the dimensionality of the
(see a survey in [11]). They essentially differ in the sensastate space makes any recovery difficult. Consequently, re-
setup and the associated data processing so that two maitialization is not straightforward. Feature detectaighin
classes can be exhibited, namely 3D reconstruction anlde ICONDENSATION framework [8] do address this
appearance based approaches. The former ones try topfibblem, but as far as we know this strategy has been
the articulated model on the 3D-point cloud issued from axclusively devoted to 2D tracking. If one could detect some
3D-sensor systene.g. a stereo head [3], [18] or a Swiss body parts then inverse kinematics could be used to solve
Ranger [9]. On the other hand, the appearance-based & the model 3D pose (re-)initialization. We thus propose
proaches infer the model configuration from its projection ia modified APF (termed IAPF) which incorporates the
monocular [10], [14], [16] or multi-ocular [5], [15] image prominent properties of alCONDENSATION algorithm.
The paper is organized as follows. Section Il first briefly
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I. INTRODUCTION AND FRAMEWORK



tion 1V describes our setup and associated evaluations, LasStrategy” taking the value TAPE”. The use of importance
section V summarizes our contribution and puts forwardampling enables self-initialization or reinitializatiin case
some future extensions. of target loss, which must be taken in account in our mobile
robotics context. The importance functig|zy—1, z;) we

Il. ANNEALED PARTICLE FILTER FOR DATA FUSION use in our amended APF involves both measurements and
A. The APF algorithm dynamics, such as the classid@lONDENSATION does.

Like all other particle filters, the Annealed Particle Filte ~\We must notice that, as is the case for theF, whose
(APF) algorithm is a Monte Carlo method dedicated tcRuthors say ‘its only disadvantage is not being able to
the recursive estimation of the state vector of a Markovia@ork in a robust Bayesian framework” [4JAPF is not a
stochastic system. Its aim is to approximate the posterigpathematically sound Monte Carlo method.

probability p(xzx|z1.,) of the state vectorr; at time k IIl. DESCRIPTION OF THE CUES

conditionally to the measurements., = z1,...,z; by a . . . o
point-mass distribution : . The |mportance _funct|o_|zy(.) ggnerally |nvollves discrim-
inant but possibly intermittent visual cdewhile measure-
(2 21) ~ Zw(i)é(m B x(“) Zw(i) . ment functionsp(z,|xx) involve cues which are persistent
P\Tk|21:k) = k k k) k ) yet proner to ambiguity for cluttered scenes [12]. Fusing
i=1 i=1 several cues confers robustness w.r.t temporary failures i
which represents the selection of a value—or particle-some of the measurement processes. The next subsections
xfj) with probability—or Weight_w;”, i=1,...,N. The describe our importance function followed by our multiple

posterior conditional mean of any function of, eg. the cues based measurement function.
Minimum Mean Square Error (MMSE) estimal#ay|z1.x],
immediately follows.

Consider a system of statg, whose dynamics and obser- We samplea percent of the particles according to the
vation density can respectively be describedpy;|z,_,) dynamics,3 percent according to the measure and the last
andp(zx|z). The basicAPF scheme is presented in table 10n€s according to the prign(z). The particles sampled
where the Strategy” parameter must take the valua PF”. from the measure are drawn from a Gaussian distribution

The main idea is to split the classicBlONDENSATION  centered on a configuratiarf’ computed from 3D positions

[1] main loop into L layers. Each stagé € {1,...,L} of head and hands thanks to an analytical Inverse-Kinematic
processes the set of particles computed by the previo(l) algorithm. These features are extracted by skin color
level. It applies a “layer dynamics function; (|5 1) blob segmentation, then matched in the image pair. 2D blob

to samples:c(’) , then focusses the resulting particlesmatChmg procedure is based upon criteria defined in [13,
ki1 Chap. 4]. The centroids of the matched regions are finally

in regions where a “layer likelihood functionp . ) :
9 y Wi(zlk. 1) dangulated using the parameters of the calibrated stereo

presents high values. The main idea is to define thed
functions smartly enough in order to improve the results otetup. Thus, hands and head can be understood as three

a classical CONDENSATION in high dimension spaces. natural ”?a”‘efs- . :
Deutscheret al. in [4] propose to select Samplingz according tog(zx|xx—1, 2 ) IS then analogous
to drawingu ~ U(0, 1) and then sampling:
p(TralTRi-1) = [P(Ik\xk—ﬁl)a"}mk:zk.z;mkq:mk,zfl oz~ plag|rr_1) if u<a
pi(zelzes) = [p(zrl2e)™ o=y, e s~ N@P Ay ifa<u<a+p

whereq, € [1,+00) andg; € [0,1] are increasing sequences * ¥ ™ N(wo, Ag) f u>a+f

of parameters. Hence, dsgrows, «o; increases, and the Where Ay is a covariance matrix. In our context, it is the

state space exploration becomes sharper. Meanwhile th@me matrix as the system dynamics covariance.

coefficientss; increase, and while the first layers use a Very | ikelihood sub-functions

smoothed likelihood functiond is small), the last layers — } o _ o

use a potentially peaked ong; (tends towards). 1) Edge distance: This likelihood requires the projection
Sampling fromp(z|zx_1)® may not be trivial. How- of the 3D model and the removal of its hidden parts. The

ever, in our context, since we use a random walk dyShape related likelihood is classically computed using the
namics p(zy|ze_1) = N(zk_1,Ar) with A, diagonal, SUm of the squared distances between model points and

sampling fromp(z|z,_1)® is equivalent to sampling from the nearest image edges. Thedg measurement points

A. Importance function

N(zp_1, 2 Ap). pi,i € {1,...,N,} for a configurationz;, are chosen to be
o _ uniformly distributed along the model projected segments.
B. The amended APF algorithm In this implementation, the edge image is converted into a

The extended\PF algorithm we propose is inspired from Distance Transform image, notég, which is used to pick
the ICONDENSATION [8]. The main idea is to explore the distance value [7]. This likelihood is given by
the state space using an importance functioey|z;_1, 2x) D2 LM
in place of the system dynamiggzy|x,_1). As the initial e Y _ ,
particle cloud is sharpened wi?ﬁin (‘aach )Iayer of thBF, plziler) o exp ( 203) » D Ny ;IDT(pZ)’
the importance sampling is introduced only in the first layer
The algorithm is presented in table | with the parameter ‘due to occlusions or mis-segmentation in our case.



ol wY, = APF({z{) |, wi) |} 2, Strategy)

LIFE=0, Samplezél)7 RPN é‘) e éN) i. |d according top(xzo ), and setw
andfq,...,8L € [0,1] the increasing likelihood functions exponentEND IF
2:IF k>1THEN {— [{r(”) . w,(c”) 1 ] 1 describes a particle approximation pfx s —1|z1:5—1)—}

set[{a(7), wH I, = [zl w7,
FORI=1,...,L,DO
IF | == 18&& Strategy —— IAPF THEN
FORi=1,...,N,DO _
Propagate the particl;e,(:)F1 using importance functlon(’ ~ q(z, zlmk”l i, zk)

) — 1 ~ . Setay,...,ar € [1,+00) the increasing dynamics function exponents

Nousw

(4) Pl(zk‘w )Pl(l(7> ‘ik 1—1

8: Update the Weigh’w,(j; , associated tcsz)l 1 by wp) with p; (), Y Ia:,(f)l 1) = (=) @) |:z:,(;)l DR
(I(xkyl "I’k-,,l—v Zk) andpl(zk ‘w(T)) _ P(Zk ‘I(Ul)[il

9: END FOR
10: Normalize the weightso(*) so thaty>, u:fj)l =1

. (i) (v
11: Resample the particle representat{ mck W ]771
12: ELSE B
13t FOR:i=1,...,N, DO _ ‘ ‘
15: Propagate the pamcLek 1_, using the dynamics funcuom( ) ~ pl(ack,l|z§;)l_1) with p, (mk,L\mS}A) = p(zk,l|m§cly),_1)“l
16: Update the we|ghm,(€)l , associated tmc;c)L Y% w< )l o p1(2k|m§i)1) with pl(zk\xgi)l) = p(zk|m§;)l)gl
17: END FOR '
18: Normalize the Welghtm;(” so thaty", w(‘) =1

. (i) N
19: Resample the particle representati mk 1 Wh 7 ]l:1
20: END IF
21: END FOR ,_
22 set{{w” w" N, = oy w1
23: Compute the posterior meah,,@k‘zl k)[xk] from particle representatiop. Y, w(7)6(mk — x(’)) of p(y|z1:k)
24: END IF

TABLE |

APF FRAMEWORK.

wherei indexes theN,, model points,Ipr(p;) is the asso- heuristic involving 3D position of detected blobs and a face
ciated value in the DT image, and, the a priori standard detector [17].

deviation of our Gaussian measure model. 4) in color distance: In some cases, we cannot triangu-

2) ROI color histograms distance: Clothes colors create late the3D positions of hands and head (not enough detected

a clear distinction between the limbs (feet, trunk of slseveblobs, triangulation error too high, ...). Consequensii,

..) of the observed person. So, the use of clothing patch@ggormation cannot be exploited. Nevertheless, we cah stil
of characteristic color distributions seems very prongsin use the skin color segmented imadie and define a new
Nror reference color models are associated with thesmlor-based likelihoodv(z;|z;). For a given stater, the

targeted ROIs. Then, the histogram distance is written 2D coordinatesp,, ;,: € {1,...,3} of hands and head
D2 after model projection are supposed to be in skin color high
p(zF%T|21) o exp (_ ' ) ’ probability areas, so that one can define
20%01
Neor (S|x)o<exp< D2> D 123:(1 Is(po,.s))
1 A ‘ P2kl Tk 952 =3 — 15(Pay,i))-
D= Nro: 1:21 (DB(h:z:k,whrefﬂ)) i=1

where Dy is the Bhattacharyya distance used to compare 5) Homogeneous color distance: This measure usey,,
the normalized histograméh, .., h., ;). The histograms disjoints setskj, i € {1,..., Ny} of uniformly sampled
appearances,e. the histogramsh,.s;, are learned on the Points inside each of thﬁfm IOFOJf'JC'fed body members for a
first image of the sequence. configurationz,.

3) 3D blob distance: In the vein of our importance ~We suppose the tracked person wears a cloth with a
function q( ) this measure involves the 3D posmoﬁ = homogeneogs color on each limb. We t.he.n use the foIIowmg
(X;,Y;,7;) of the person hands and headq {1,2,3}) Mmeasure, withop, . the standard deviation of the color
after triangulation. We define : distribution on channet € {R,G, B} associated to point

set E; of memberi :
2
pletlon) xexp (~503) D= ZDE P, pefthon) e (2 )
WhereDE(Pwk 1,P ) is the Euclidean distance between the 1 N (4
mass cente?;, of blob j; (ji € {1,..., Npi,}) and Py, D= N 3 OE;,c
the 3D posmon of a hand or the head of the model under ™ i=1 ce{R,G,B}

hypothesisz. Link betweeni and j; is done by a simple



(®

(e)

Fig. 1. Distance evolution regarding the position of-®OF arm on clear

and cluttered backgrounds. Figures (b), (c), (d), (e) ande$pectively

show distances relative to edges, ROI histogradidsplobs, skin color and
uniform color on limbs. Red and blue lines respectively repne the ground .
truth (set manually) and the filter MMSE.

@) (b) © @

C. Cues study and discussion

The above measurements are assumed mutually indepen-
dent conditioned on the state, so that the global measutemen
function factorizes as :

3d

p(zelor) = p(zliv ZIIjOI? 2%, 25 ercn|xk)
= P(Zi|$k)P(Z;§'OI\xk)P(zi’d\xk)p(zi|$k)P(Zﬁn\33k)

Fig. 1 plots the distances obtained by sweeping a subspace
of the configuration space formed by the orientation of the
model right arm involving moderate or heavy background
clutter. These plots bring out that appearance based nesasur
are less discriminant than the ones involving 3D infornratio
(Fig. 1 (d)). In cluttered background, edge distance measur
is not sufficiently discriminant as multipleinima are present
(b) while color histograms on ROIls are quite robust to
background clutter (c), but still very sensitive to illuration
changes. The skin probability measure (e) is extremelypshar
but shows some false positives as soon as spurious skin color
like regions are detected. Color uniformity (f) performsliwve
in a cluttered background if the tracked person wears aesing|
color shirt, but very poorly otherwise.

Moreover, we can notice that among all of the cues

Distance Image, Skin proba.

3D Blob distance, ROI histograms...

Fig. 2. Software architecture of the tracking module.

to RGB images. Then a white balance is applied, and
the image is conveniently resized.

The image processing stage computes various images
to be used by the measure module. The first of them is
the distance imagé&pr, obtained by applying a distance
transform on an edge image computed by a Canny edge
detector. The module also computes a skin color image
Ig, by back-projecting an off-line learned skin region
histogram. These ones are used to triangulate3ibe
position of head and hands. A face detector is also
implemented among various other functionalities.

« The filtering module implements some classical particle

filter schemes, among which @ONDENSATION,

an ICONDENSATION, an APF, and our amended
version of the latest IAPF. The filters based on an
importance function use data from the IK algorithm to
draw samples from the measure. This stage provides
the output from the global tracking systerne. the
estimated3D configuration of the person.

The measure module is in charge of particle likelihood
evaluations. For each particle of the chosen filtering
strategy, it computes the distances presented in IlI-
B, using some of the images computed by the image
processing module.

The IK algorithm computes 8D configuration of the
human body model from head and hand detections
provided by the image processing module when these
ones are available. The computed configuration is the

presented above, no assumption has been made on the fact nearest one to a given rest position.

that the robot must not move, that is, trackers can perform

well even if the scene background changes due to a robBt Evaluations and discussion
motion (as long as this displacement is consistent with the s TAPF-based tracker was tested on a number of

system dynamics).

challenging sequences, acquired from the robot, of human
IV. SYSTEM SETUP movement including temporary occlusions, jumps in the
. . . dynamic, heavy or moderate cluttered backgrounds. Refer
A. Implementation and associated architecture to the URLwww. | aas/ ~nf ont mar for more videos and
We use a human model based on truncated cones, evfithges. The current processing rate ranges fioH = to
if boxes are prefered fa3D visualization as they provide a 4 /> on al.8 GHz Pentium IV Centrino personal computer.
better way to see rotations. It usés degrees of freedom : We saw that by using both our importance and multiple
6 for global localization,3 rotations for each shoulder and cyes measurement functions, we could reduce the size of
1 for each elbow. The head is supposed to be rigidly linkeghe search space. This reduction of search space allows
with the torso. to limit drastically the required number of particles withi
The software architecture is presented on fig. 2. We hayeoo; 1000]. The IAPF and APF we set up us@ layers.
chosen to set up main modules : 1) Accuracy: Accuracy in our context is very difficult to
o The image preprocessing module is in charge of a feevaluate since we are not able to have access to a precise
standard tasks in order to obtain a good base imaggound truth. That's why we first tested our tracker perfor-
to work on. First, the module converts the raw datanance on synthetic data. Results are presented on figure
acquired from two mono-CCD stereo fire-wire camerag. Since algorithms take place in a stochastic framework,
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Fig. 3. ICONDENSATION andIAPF runs on two different sequences (up and down). Left plotsvsthe error (Euclidean square distance) between
estimates of each filter and the ground truth. For each pigit sSequences show ti&@ ONDENSATION andIAPF runs.

| error SIR
16f error ICOND
| error APF

error IAPF

error to ground truth

Fig. 4. Error between ground truth and estimates of diffefétgring
strategies IR, ICONDENSATION, APF, IAPF)

Name Description Value
(W, H) Image size (640, 480)
N Number of particles 600
Niayers APF layer number 3
(a1, a2, a3) Dynamics exponents (1,4,25)
(B1, B2, B3) Likelihood exponents (0.1,0.4,1)
(e, B) q(.) parameters (0.8,0.2)
(Ue’gjgi;?& Likelihood parameters (1%_82'?’1%)15’
p(zg|re—1) Dynamics N(zp—1,Ag)

TABLE I
PARAMETERS VALUES USED IN THE TRACKERS

few sequences representative of the mean behavior of the
filters. We noticed the error to ground truth is lowered from
0 to 15 degrees in rotations.

Nevertheless, those latest data must be handled carefully.
For more reliable results, one should use a commercial HMC
system, what we are not able to do at the moment.

2) Robustness: The main advantage of odAPF over

we launchedl5 runs of different filtering strategies, amongAPF in our high dimension state tracking context is the
which theIAPF one, for a linear Gaussian stochastic systerpossibility to initialize or re-initialize automatically— and
using random walk dynamics. We then plot the mean err@o aid recovery from transient tracking failures —, which

to ground truth for a state space of dimensidh We can
see that oufAPF strategy performs as well as thePF,
and better than well-knowhCONDENSATION and SIR.
We noticed an average error reduction6f% for the IAPF
with respect tdlCONDENSATION.

In our visual tracking context, it seems that duxPF
gives at least similar results ICONDENSATION, and, in
some tricky cases, better ones. Once aghinuns of each

frees the tracker from the classical “by hand” initialipet]

as a detection of head and hands is enough to induce a
3D configuration of the model. We can even add more
constraints to be sure that reference histograms are acquir
correctly, eg. the person must face the camera and have
straight arms. A short sequence showing IAPF-based
tracker (re-)initialization is presented on fig 5. In these
sequence, no prior draw is used.

filter have been performed on the same data to evaluate the3) Computation time: In all tests presented in this pa-
mean behavior of each tracker. The fig. 3 shows the distanper, [CONDENSATION has been run usingV particles,
between a ground truth built “by hand” and the estimateshile IAPF and APF has been run usingv; layers and
provided byICONDENSATION and IAPF trackers on a N/Nj, particles. This choice is justified by the limited CPU



faster and more robust than color segmentation. Such ma-
chine learning methods will be extended to other limbs [15]
in order to provide additional “initialization” cues. To ou
belief, the difference with conventional particle filtereuid

be more significant if we had better part detectors. Next,
our observation model will be enriched with sparse stereo-
correlation data. Further evaluations will be also perfedm
using a motion capture testbed that provides more accurate
“ground truth” from a commercial HMC system, such as
VICON, that will be synchronized with the video streams.

(1]
[2]
Fig. 5. From left to right and from top to down : the trackerndtialized
with a default configuration which does not make sense as ryabqutesent. [3]
The tracker diverges. Head and hands detections enableiltb dipasic
configuration near from the real one to initialize the péeticloud : the
initialization succeeds. [4]
(5]

resources we have : by choosing this ratio between particles
and layers, all strategies use the same time to perform one
iteration. Hence we can compare results for a given CPUSI
resource. This also means that for same accuracy results,

one should use less particles witAPF strategy than with  [7]
ICONDENSATION.
4) Material considerations. In its actual form, our tracker (8]

performs on640 x 480 pixel images. Most of the time
consumption — abouR00 ms — is spent in image pro-
cessing and preprocessing (conversion from Bayer to RGé?]
skin probability computations, distance image, ...), ared w

hope to optimize this step. Furthermore, we could improve
the tracker frequency by reducing the image size. A fewt
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