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Abstract This paper introduces data fusion strategies
within particle filtering in order to track people from a single
camera mounted on a mobile robot in a human environment.
Various visual cues are described, relying on color, shape or
motion, together with several filtering strategies taking into
account all or parts of these measurements in their impor-
tance and/or measurement functions. A preliminary evalua-
tion enables the selection of the most meaningful visual cues
associations in terms of discriminative power, robustness to
artifacts and time consumption. The depicted filtering stra-
tegies are then evaluated in order to check which people tra-
ckers, regarding visual cues and algorithms associations, best
fulfill the requirements of the considered scenarios. The per-
formances are compared through some quantitative and qua-
litative evaluations. Some associations of filtering strategies
and visual cues show a significant increase in the tracking
robustness and precision. Future works are finally discussed.
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1 Introduction

Tracking people in dynamically changing environments is a
critical task over a wide range of applications, e.g. human–
computer interface [8,22], teleconferencing [41], surveil-
lance [18,19], motion capture [29], video compression [35],
and driver assistance [4]. This paper focuses on mobile
robotic applications, where visual tracking of people is one of
the ubiquitous elementary functions. Tracking from a mobile
platform is a very challenging task, which imposes several
requirements. First, the sensors being embedded on the robot,
they are usually moving instead of static, and have a restricted
perception of the environment. Moreover, the robot is expec-
ted to evolve in a wide variety of environmental conditions.
Consequently, several hypotheses must be handled simul-
taneously and a robust integration of multiple visual cues
is required in order to achieve some robustness to artifacts.
Finally, on-board computational power is limited so that only
a small percentage of these resources can be allocated to tra-
cking, the remaining part being required to enable the concur-
rent execution of other functions as well as decisional rou-
tines within the robot’s architecture. Thus, care must be taken
to design efficient algorithms.

Many 2D people tracking paradigms with a single camera
have been proposed in the literature which we shall not
attempt to review here. The reader is referred to [15,46] for
details. One can mention Kalman filtering [35], the mean-
shift technique [12] or its variant [11], tree-based filtering
[36] among many others. Beside these approaches, one of the
most successful paradigms, focused in this paper, undoub-
tedly concerns sequential Monte Carlo simulation methods,
also known as particle filters [14]. The popularity of these
strategies stems from their simplicity, ease of implementa-
tion, and modeling flexibility over a wide variety of applica-
tions. They seem well-suited to visual tracking as they make
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no assumption on the probability distributions entailed in the
characterization of the problem and enable an easy combi-
nation/fusion of diverse kind of measurements.

Particle filters represent the posterior distribution by a set
of samples, or particles, with associated importance weights.
This weighted particles set is first drawn from the state vector
initial probability distribution, and is then updated over time
taking into account the measurements and a prior knowledge
on the system dynamics and observation models.

In the Computer Vision community, the formalism has
been pioneered in the seminal paper [20] by Isard and Blake,
which coins the term CONDENSATION. In this scheme,
the particles are drawn from the dynamics and weighted by
their likelihood w.r.t. the measurement. CONDENSATION
is shown to outperform Kalman filter in the presence of back-
ground clutter.

Following the CONDENSATION algorithm, various
improvements and extensions have been proposed for visual
tracking. Isard et al. in [22] introduce a mixed-state
CONDENSATION tracker in order to perform multiple
model tracking. The same authors propose in [21] another
extension, named ICONDENSATION, which has introdu-
ced for the first time importance sampling in visual tracking.
It constitutes a mathematically principled way of directing
search, combining the dynamics and measurements. So, the
tracker can take advantage of the distinct qualities of the
information sources and re-initialize automatically when
temporary failures occur. Particle filtering with history sam-
pling is proposed as a variant in [37]. Rui and Chen in [34]
introduce the Unscented Particle Filter (UPF) into audio and
visual tracking. The UPF uses the Unscented Kalman filter
to generate proposal distributions that seamlessly integrate
the current observation. Partitioned sampling, introduced by
MacCormick and Isard in [27], is another way of applying
particle filters to tracking problems with high-dimensional
configuration spaces. This algorithm is shown to be well-
suited to track articulated objects [28]. The hierarchical stra-
tegy [33] constitutes a generalization. Last, though outside
the scope of this paper, particle filters have also become a
popular tool to perform simultaneous tracking of multiple
persons [27,42].

As mentioned before, the literature proposes numerous
particle filtering algorithms, yet a few studies comparing the
efficiency of these filtering strategies have been carried out.
When doing so, the associated results are mainly compared
against those of the original CONDENSATION approach
[26,34,37].

Another observation concerns data fusion. It can be argued
that data fusion using particle filtering schemes has been
fairly seldom exploited within this visual tracking context.
The numerous visual trackers referred to in the literature
consider a single cue, i.e. contours [20,28,34] or color
[30,32]. The multiple cues association has often been confined

to contours and color [8,21,37,47], or color and motion
[6,10,33,43].

This data fusion problem has been extensively tackled by
Pérez et al. in [33]. The authors propose a hierarchical par-
ticle filtering algorithm, which successively takes account
of the measurements so as to efficiently draw the particles.
To our belief, using multiple cues simultaneously, both in
the importance and measurement functions, not only allows
to use complementary and redundant information but also
enables a more robust failures detection and recovery. More
globally, other existing particle filtering strategies should also
be evaluated in order to check which ones best fulfill the
requirements for the envisaged application.

From these considerations, a first contribution of this paper
relates to visual data fusion in robotics scenarios covering
a wide variety of environmental conditions. A large spec-
trum of plausible multi-cues association for such a context is
depicted. Evaluations are then performed in order to exhibit
the most meaningful visual cues associations in terms of dis-
criminative power, robustness to artifacts and time consump-
tion, be these cues involved in the particle filter importance
or measurement functions. A second contribution concerns
a thorough comparison of the various particle filtering stra-
tegies for data fusion dedicated to the applications envisaged
here. Some experiments are presented, in which the designed
trackers efficiency is evaluated with respect to temporary tar-
get occlusion, presence of significant clutter, as well as large
variations in the target appearance and in the illumination
of the environment. These trackers have been integrated on
a tour-guide robot named Rackham whose role is to help
people attending an exhibition.

The paper is organized as follows. Section 2 describes
Rackham and outlines the embedded visual trackers. Sec-
tion 3 sums up the well-known particle filtering formalism,
and reviews some variants which enable data fusion for tra-
cking. Then, Sect. 4 specifies some visual measurements
which rely on the shape, color or image motion of the obser-
ved target. A study comparing the efficiency of various par-
ticle filtering strategies is carried out in Sect. 5. Section 6
reports on the implementation of these modalities on Rack-
ham. Last, Sect. 7 summarizes our contribution and puts
forward some future extensions.

2 Rackham and the tour-guide scenario progress

Rackham is an iRobot B21r mobile platform whose stan-
dard equipment has been extended with one pan-tilt camera
EVI-D70 dedicated to H/R interaction, one digital camera
for robot localization, one ELO touch-screen, a pair of loud-
speakers, an optical fiber gyroscope and wireless Ethernet
(Fig. 1).
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Fig. 1 Rackham

Rackham has been endowed with functions enabling it to
act as a tour-guide robot. So, it embeds robust and efficient
basic navigation abilities in human-crowded environments.
For instance, Fig. 2a shows the laser map of an exhibition,
which the robot first builds automatically during an explo-
ration phase with no visitor and then uses for localization.
Besides, our efforts have concerned the design of visual func-
tions in order to track, recognize and interact with visitors
attending an exhibition. Figure 2b reports the robot’s inter-
face display gathering the outputs from such visual functions
(top right) together with other interaction facilities: selection
of exhibition areas (top left, down left), human-like clone
(down right), etc.

When Rackham is left alone with no mission, it tries to find
out people whom he could interact with, a behavior hereafter
called “search for interaction”. As soon as a visitor comes

into its neighborhood, it introduces itself, tries to identify
his/her face and explains how to use its services thanks to
the touch-screen. More precisely, if the interlocutor is unk-
nown, the robot opens a face learning session, then asks
him/her to define the mission. On the contrary, when inter-
acting with a formerly identified user, the robot can suggest
missions/services which are complementary to the ones exe-
cuted in the past. Once the robot and its tutor have agreed
on an area to visit, Rackham plans and displays its trajec-
tory, prior to inviting its user to follow. While navigating,
the robot keeps on giving information about the progress
of the ongoing path and verifies the user presence. Whenever
the guided visitor leaves during the execution of this “gui-
dance mission”, the robot detects this and stops. If, after a
few seconds, this user is not re-identified, the robot restarts
a “search for interaction” session. Otherwise, when a known
user is re-identified, the robot proposes him/her to continue
the ongoing “guidance mission”.

The design of visual modalities has been undertaken
within this demonstration scenario. Three basic tracking
modalities, focused in this paper, have been outlined which
the robot must basically deal with:

1. The search for interaction, where the robot, static and
left alone, visually tracks visitors thanks to the camera
mounted on its helmet, in order to heckle them when
they enter the exhibition (Fig. 3a). This modality involves
the whole human body tracking at long H/R distances
(>3 m);

2. The proximal interaction, where a user can interact
through the ELO touch-screen, to select the area he/she
wants to visit (Fig. 3b); during this interaction, the robot
remains static and must keep, thanks to the camera mate-
rializing its eye, the visual contact with its tutor’s face at
short H/R distances (<1 m);

3. The guidance mission, where the robot drives the visi-
tor to the selected area; during its mission, the robot
must also maintain the interaction with the guided visitor
(Fig. 3c). This modality involves the upper human body
tracking at medium H/R distances.

Fig. 2 Interface display (a),
SICK laser map of the
exhibition (b)
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Fig. 3 The robot visual modalities: a search for interaction, b proximal
interaction, c guidance mission

These trackers involves the camera EVI-D70 whose charac-
teristics are: image resolution 320×240 pixels, retina dimen-
sion 1/2′′, and focal length 4.1mm.

3 Particle filtering algorithms for data fusion

3.1 A generic algorithm

Particle filters are sequential Monte Carlo simulation
methods to the state vector estimation of any Markovian
dynamic system subject to possibly non-Gaussian random
inputs [3,13,14]. Their aim is to recursively approximate the
posterior probability density function (pdf) p(xk |z1:k) of the
state vector xk at time k conditioned on the set of measure-
ments z1:k = z1, . . . , zk . A linear point-mass combination

p(xk |z1:k) ≈
N∑

i=1

w
(i)
k δ

(
xk − x (i)

k

)
,

N∑

i=1

w
(i)
k = 1, (1)

is determined—with δ(·) the Dirac distribution—which
expresses the selection of a value—or “particle”—x (i)

k with

probability—or “weight”—w
(i)
k , i = 1, . . . , N . An approxi-

mation of the conditional expectation of any function of xk ,
such as the minimum mean square error (MMSE) estimate
Ep(xk |z1:k)[xk], then follows.

Let the system be fully described by the prior p(x0), the
dynamics pdf p(xk |xk−1) and the observation pdf p(zk |xk).
The generic particle filtering algorithm—or “Sampling
Importance Resampling” (SIR)—is shown in Table 1. Its ini-
tialization consists in an independent identically distributed
(i.i.d.) sequence drawn from p(x0). At each further time k, the
particles keep evolving stochastically, being sampled from an
importance function q(xk |x (i)

k−1, zk) which aims at adaptively
exploring “relevant” areas of the state space. They are then
suitably weighted so as to guarantee the consistency of the
approximation (1). To this end, step 5 affects each particle
x (i)

k a weight w(i)
k involving its likelihood p(zk |x (i)

k ) w.r.t. the

measurement zk as well as the values at x (i)
k of the importance

function and dynamics pdf.
In order to limit the degeneracy phenomenon, which says

that whatever the sequential Monte Carlo simulation method,
after few instants all but one particle weights tend to zero,
step 8 inserts a resampling stage, e.g. the so-called “syste-
matic resampling” defined in [25]. There, the particles asso-
ciated with high weights are duplicated while the others

collapse, so that the resulting sequence x (s(1))
k , . . . , x (s(N ))

k

is i.i.d. according to
∑N

i=1 w
(i)
k δ(xk − x (i)

k ). Note that this
resampling stage should rather be fired only when the fil-
ter efficiency—related to the number of “useful” particles—
goes beneath a predefined threshold [14].

3.2 Importance sampling from either dynamics
or measurements: basic strategies

The CONDENSATION—for “Conditional Density Propaga-
tion” [20]—can be viewed as the instance of the SIR
algorithm in which the particles are drawn according to the
system dynamics, viz. when q(xk |x (i)

k−1, zk) = p(xk |x (i)
k−1).

This endows CONDENSATION with a prediction-update
structure, in that

∑N
i=1 w

(i)
k−1δ(xk − x (i)

k ) approximates the

prior p(xk |z1:k−1). The weighting stage becomes w
(i)
k ∝

w
(i)
k−1 p(zk |x (i)

k ). In the visual tracking context, the original
algorithm [20] defines the particles likelihoods from contour
primitives, yet other visual cues have also been exploited [33].

Resampling by itself cannot efficiently limit the degene-
racy phenomenon. In addition, it may lead to a loss of diver-
sity in the state space exploration. The importance function
must thus be defined with special care.

In visual tracking, the modes of the likelihoods
p(zk |xk), though multiple, are generally pronounced. As

CONDENSATION draws the particles x (i)
k from the sys-

tem dynamics but “blindly” w.r.t. the measurement zk , many
of these may well be assigned a low likelihood p(zk |x (i)

k )

and thus a low weight in step 5, significantly worsening the
overall filter performance. An alternative, henceforth labeled
“Measurement-based SIR” (MSIR), merely consists in sam-
pling the particles at time k—or just some of their entries—
according to an importance function π(xk |zk) defined from
the current image. The first MSIR strategy was
ICONDENSATION [21], which guides the state space explo-
ration by a color blobs detector. Other visual detection func-
tionalities can be used as well, e.g. face detector (Sect. 4), or
any other intermittent primitive which, despite its sporadi-
city, is very discriminant when present [33]: motion, sound,
etc.

In an MSIR scheme, a particle x (i)
k whose entries are drawn

from the current image may be inconsistent with its prede-
cessor x (i)

k−1 from the point of view of the state dynamics.

As expected, the smaller is the value p(x (i)
k |x (i)

k−1), the lesser
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Table 1 Generic particle filtering algorithm (SIR)

[{x(i)
k , w

(i)
k }]N

i=1= SIR([{x(i)
k−1, w

(i)
k−1, }]N

i=1
, zk )

1: IF k = 0, THEN Draw x(1)
0 , . . . , x(i)

0 , . . . , x(N )
0 i.i.d. according to p(x0), and set w

(i)
0 = 1

N END IF

2: IF k ≥ 1 THEN {—[{x(i)
k−1, w

(i)
k−1}]N

i=1
being a particle description of p(xk−1|z1:k−1)—}

3: FOR i = 1, . . . , N , DO
4: “Propagate” the particle x(i)

k−1 by independently sampling x(i)
k ∼ q(xk |x(i)

k−1, zk )

5: Update the weight w
(i)
k associated with x(i)

k according to w
(i)
k ∝ w

(i)
k−1

p(zk |x(i)
k )p(x(i)

k |x(i)
k−1)

q(x(i)
k |x(i)

k−1, zk )
, prior to a normalization step s.t.

∑
i w

(i)
k = 1

6: END FOR
7: Compute the conditional mean of any function of xk , e.g. the MMSE estimate Ep(xk |z1:k )[xk ], from the approximation

∑N
i=1 w

(i)
k δ(xk − x(i)

k ) of the posterior p(xk |z1:k )

8: At any time or depending on an “efficiency” criterion, resample the description [{x(i)
k , w

(i)
k }]N

i=1 of p(xk |z1:k ) into the equivalent evenly weighted particles

set [{x(s(i))
k , 1

N }]
N

i=1, by sampling in {1, . . . , N } the indexes s(1), . . . , s(N ) according to P(s(i) = j) = w
( j)
k ; set x(i)

k and w
(i)
k with x(s(i))

k and 1
N

9: END IF

is the weight w
(i)
k . One solution to this problem, as propo-

sed in the genuine ICONDENSATION algorithm, consists in
sampling some of the particles from the dynamics and some
w.r.t. the prior, so that the importance function reads as, with
α, β ∈ [0; 1]

q
(

xk |x (i)
k−1, zk

)

= απ(xk |zk) + βp
(

xk |x (i)
k−1

)
+ (1 − α − β)p0(xk). (2)

This combination enables the tracker to benefit from the dis-
tinct qualities of the information sources and to re-initialize
automatically when temporary failures occur.

3.3 Towards the “optimal” case: the auxiliary particle filter

It can be shown [14] that the “optimal” recursive scheme,
i.e. which best limits the degeneracy phenomenon,
must define q∗(xk |x (i)

k−1, zk) � p(xk |x (i)
k−1, zk) and thus

w
∗ (i)
k ∝ w

∗ (i)
k−1 p(zk |x (i)

k−1) in the SIR algorithm (Table 1).

Each weight w∗ (i)
k can then be computed before drawing x (i)

k .
So, the overall efficiency can be enhanced by resampling

the weighted particle set [{x (i)
k−1, w

∗ (i)
k }]N

i=1
, which in fact

represents the smoother pdf p(xk−1|z1:k), just before its
“propagation” through the optimal importance function

q∗(xk |x (i)
k−1, zk).

Despite such an algorithm can be seldom implemented
exactly, it can be mimicked by the “Auxiliary Particle Fil-
ter” (AUXILIARY_PF) along the lines of [31], see Table 2.
Let the importance function π(xk |x (i)

k−1, zk) = p(xk |x (i)
k−1)

be defined in place of q∗(xk |x (i)
k−1, zk), and p̂(zk |x (i)

k−1) be

an approximation of the predictive likelihood p(zk |x (i)
k−1)

(steps 3–5); for instance, one can set p̂(zk |x (i)
k−1)=p(zk |µ(i)

k ),

where µ
(i)
k characterizes the distribution of xk conditioned

on x (i)
k−1, e.g. µ

(i)
k = E

p(xk |x (i)
k−1)

[xk] or µ
(i)
k ∼ p(xk |x (i)

k−1).

First, an auxiliary weight λ
(i)
k ∝ w

(i)
k−1 p̂(zk |x (i)

k−1) is

associated with each particle x (i)
k−1. The approximation

[{x (i)
k−1, λ

(i)
k }]N

i=1
of p(xk−1|z1:k) is then resampled into

[{x (s(i))
k−1 , 1

N }]N

i=1
(step 6), prior to its propagation until time

k through π(xk |x (s(i))
k−1 , zk) (step 8). Finally, the weights of

the resulting particles x (i)
k must be corrected (step 9) in order

to take account of the “distance” between λ
(i)
k and w

∗(i)
k , as

well as of the dissimilarity between the selected and optimal

importance functionsπ(x (i)
k |x (s(i))

k−1 , zk) and p(x (i)
k |x (s(i))

k−1 , zk).
The particles cloud can thus be steered towards relevant

areas of the state space. In the visual tracking context, the
approximate predictive likelihood can rely on distinct visual
cues from these involved in the computation of the “final-
stage” likelihoods p(zk |x (i)

k ). The main limitation of the
AUXILIARY_PF algorithm is its bad performance when the
dynamics is uninformative compared to the state final-stage
likelihood, e.g. when the dynamics is very noisy or when the
observation density has sharp modes. Therefore, µ

(i)
k being

a bad characterization of p(xk |x (i)
k−1), the pdf p(xk−1|z1:k)

of the smoother is poorly approximated by [{x (i)
k−1, λ

(i)
k }]N

i=1
.

The resampling stage in step 6 of Table 2 may well eliminate
some particles which, once propagated through the dyna-
mics, would be very likely w.r.t. zk . At the same time, other
particles may well be duplicated which, after the prediction
step, come to lie in the final-stage likelihood tails.

In the framework of auxiliary particle filters, the Uns-
cented Transform [24] can constitute a way to define a bet-
ter approximation p̂(zk |xk−1) of the predictive likelihood
p(zk |xk−1), which is the basis of the auxiliary resampling
stage, see steps 3–6 of Table 2. As is the case in the Unscen-
ted Particle Filter [39], this transform can also be entailed in
the association to each particle of the Gaussian near-optimal
importance function from which it is sampled. Andrieu
et al. propose such a strategy in [2]. Nevertheless, despite
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Table 2 Auxiliary particle filter (AUXILIARY_PF)

[{x(i)
k , w

(i)
k }]N

i=1 = AUXILIARY_PF([{x(i)
k−1, w

(i)
k−1}]N

i=1
, zk )

1: IF k = 0, THEN Draw x(1)
0 , . . . , x(i)

0 , . . . , x(N )
0 i.i.d. according to p(x0), and set w

(i)
0 = 1

N END IF

2: IF k ≥ 1 THEN {—[{x(i)
k−1, w

(i)
k−1}]N

i=1
being a particle description of p(xk−1|z1:k−1)—}

3: FOR i = 1, . . . , N , DO
4: From the approximation p̂(zk |x(i)

k−1) = p(zk |µ(i)
k ) – e.g. with µ

(i)
k ∼ p(xk |x(i)

k−1) or µ
(i)
k = E

p(xk |x(i)
k−1)

[xk ]–, compute the auxiliary weights λ
(i)
k ∝ w

(i)
k−1 p̂(zk |x(i)

k−1),

prior to a normalization step s.t.
∑

i λ
(i)
k = 1

5: END FOR

6: Resample [{x(i)
k−1, λ

(i)
k }]N

i=1
– or, equivalently, sample in {1, . . . , N } the indexes s(1), . . . , s(N ) of the particles at time k − 1 according to P(s(i) = j) = λ

( j)
k – in order to get

[{x(s(i))
k−1 , 1

N }]
N

i=1
; both

∑N
i=1 λ

(i)
k δ(xk−1 − x(i)

k−1) and 1
N

∑N
i=1 δ(xk−1 − x(s(i))

k−1 ) mimic p(xk−1|z1:k )

7: FOR i = 1, . . . , N , DO

8: “Propagate” the particles by independently drawing x(i)
k ∼ p(xk |x(s(i))

k−1 )

9: Update the weights, prior to their normalization, by setting w
(i)
k ∝ p(zk |x(i)

k )p(x(i)
k |x(s(i))

k−1 )

p̂(zk |x(s(i))
k−1 )π(x(i)

k |x(s(i))
k−1 ,zk )

= p(zk |x(i)
k )

p̂(zk |x(s(i))
k−1 )

= p(zk |x(i)
k )

p(zk |µ(s(i))
k )

10: Compute Ep(xk |z1:k )[xk ] from the approximation
∑N

i=1 w
(i)
k δ(xk − x(i)

k ) of the posterior p(xk |z1:k )

11: END FOR
12: END IF

its attractiveness and its ability to mimic the optimal case,
this is more difficult to implement and shows a higher com-
putational cost.

3.4 Other strategies suited to visual tracking

3.4.1 History sampling

Several interesting particle filtering alternatives to visual tra-
cking are proposed in [37]. One of them considers dyna-
mic models of order greater than or equal to 2, in which
the state vector has the form xk = (u′

k, v
′
k, h′

k)
′, with [.]′ the

transpose operator. The subvector (u′
k, v

′
k)

′ or “innovation
part”—of xk obeys a stochastic state equation on xk−1, while
hk—called “history part”—is a deterministic function

f (xk−1). It is assumed that the innovations (u(i)
k

′
, v

(i)
k

′
)′ are

sampled from an importance function such as
qI (uk, vk |x (i)

k−1, zk) = π(uk |zk)p(vk |u(i)
k , x (i)

k−1), i.e. the sub-

particles u(i)
k are positioned from the measurement only while

the v
(i)
k ’s are drawn by fusing the state dynamics with the

knowledge of u(i)
k —and that the pdf of the measurement

conditioned on the state satisfies p(zk |xk) = p(zk |uk, vk).
This context is particularly well-suited to visual tracking,
for state-space representations of linear AR models entail
the above decomposition of the state vector, and because the
output equation does not involve its “history part”.

The authors define procedures enabling the avoidance of

any contradiction between (u(i)
k

′
, v

(i)
k

′
)′ and its past x (i)

k−1.
Their “Rao-Blackwellized Subspace SIR with History Sam-
pling” (RBSSHSSIR) is summarized in Table 3. Its step 5
consists, for each subparticle u(i)

k drawn from π(uk |zk), in
the resampling of a predecessor particle—and thus of the

“history part” of x (i)
k —which is at the same time likely w.r.t.

u(i)
k from the dynamics point of view and assigned with a

significant weight. The RBSSHSSIR algorithm noticeably
differs from ICONDENSATION precisely because of this

stage, yet necessary lest the weighted particles [{x(i)
k , w

(i)
k }]N

i=1
is not a consistent description of the posterior p(xk |z1:k).

An original proof of the RBSSHSSIR algorithm is sket-
ched in [9], using arguments similar to these underlying
the AUXILIARY_PF. It is shown that the algorithm applies
even when the state process is of the first order, by just sup-
pressing the entry f (xk−1) from xk .

3.4.2 Partitioned and hierarchical sampling

Partitioned and Hierarchical sampling can significantly
enhance the efficiency of a particle filter in cases when the
system dynamics comes as the successive application of ele-
mentary dynamics, provided that intermediate likelihoods
can be defined on the state vector after applying each par-
tial evolution model. The classical single-stage sampling of
the full state space is then replaced by a layered sampling
approach: thanks to a succession of sampling operations fol-
lowed by resamplings based on the intermediate likelihoods,
the search can be guided so that each sampling stage refines
the output from the previous stage.

To outline the technical aspects of each strategy, let
ξ0 = xk−1, ξ1, . . . , ξM−1, ξM = xk be M + 1 “auxiliary vec-
tors” such that the dynamics p(xk |xk−1) reads as the
convolution

p(xk |xk−1)

=
∫

d̃M (ξM |ξM−1) . . . d̃1(ξ1|ξ0) dξ1 . . . dξM−1, (3)

123



Particle filtering strategies for data fusion dedicated to visual tracking from a mobile robot

Table 3 Rao-Blackwellized subspace particle filter with history sampling (RBSSHSSIR)

[{x(i)
k , w

(i)
k }]N

i=1 = RBSSHSSIR([{x(i)
k−1, w

(i)
k−1}]N

i=1
, zk )

1: IF k = 0, THEN Draw x(1)
0 , . . . , x(i)

0 , . . . , x(N )
0 i.i.d. according to p(x0), and set w

(i)
0 = 1

N END IF

2: IF k ≥ 1 THEN {—[{x(i)
k−1, w

(i)
k−1}]N

i=1
being a particle description of p(xk−1|z1:k−1)—}

3: FOR i = 1, . . . , N , DO
4: Draw u(i)

k ∼ π(uk |zk )

5: Sample in {1, . . . , N } the index I (i)
k of the predecessor particle of u(i)

k according to the weights (w
(1)
k−1 p(u(i)

k |x(1)
k−1), . . . , w

(.)
k−1 p(u(i)

k |x(.)
k−1), . . . , w

(N )
k−1 p(u(i)

k |x(N )
k−1)), i.e.

according to P(I (i)
k = j) = w

( j)
k−1 p(u(i)

k |x( j)
k−1)

∑N
l=1 w

(l)
k−1 p(u(i)

k |x(l)
k−1)

6: Draw v
(i)
k ∼ p(vk |u(i)

k , x
(I (i)k )

k−1 )

7: Set x(i)
k =

⎛

⎝u(i)
k

′
, v

(i)
k

′
, f (x

(I (i)k )

k−1 )

′⎞
⎠

′

8: Update the weights, prior to their normalization, by setting w
(i)
k ∝ p(zk |u(i)

k )
∑N

l=1 w
(l)
k−1 p(u(i)

k |x(l)
k−1)

π(u(i)
k |zk )

9: Compute the conditional mean of any function of xk , e.g. the MMSE estimate Ep(xk |z1:k )[xk ], from the approximation
∑N

i=1 w
(i)
k δ(xk − x(i)

k ) of the posterior p(xk |z1:k )

10: END FOR
11: END IF

i.e. the successive application of d̃1(ξ1|ξ0), . . . , d̃m(ξm |ξm−1),

. . . , d̃M (ξM |ξM−1). The measurement pdf p(zk |xk) is
supposed to factorize as p(zk |xk) = ∏M

m=1 pm(zk |xk).
The second partitioned particle filtering algorithm pro-

posed in [28] assumes that the state vector dynamics are
component-wise independent, i.e. if all the vectors ξm ,
m = 1, . . . , M , are analogously partitioned into M subvec-
tors ξ1

m, . . . , ξ M
m , then d̃m(ξm |ξm−1) = p(ξm

m |ξm
m−1)∏

r �=m δ(ξ r
m − ξ r

m−1) holds for all m = 1, . . . , M so that

p(xk |xk−1) = ∏M
m=1 p(xm

k |xm
k−1). In addition, the interme-

diate likelihoods pm(zk |xk) are supposed to concern a sub-
set of the state vector all the more important as m −→ M ,
i.e. to have the form pm(zk |xk) = lm(zk |x1

k , . . . , xm
k ). Under

these hypotheses, the partitioned particle filter follows the
algorithm outlined in Table 4, with q̃m(ξm |ξm−1, zk) =
d̃m(ξm |ξm−1), pm(zk |xk) = lm(zk |x1

k , . . . , xm
k ).

Partitioned sampling has been successfully applied to the
visual tracking of an open kinematic chain in [28], by orga-
nizing the state vector so that its first entries depict the top
elements of the chain—to be accurately positioned sooner for
a higher efficiency—while its last components are related to
the extremities. A branched algorithm has also proved to be
able to track multiple persons in [27].

The hierarchical particle filter developed in [33] can
be viewed as a generalization of the partitioned scheme
outlined above. No restriction is imposed on the functions
d̃1(·|·), d̃M (·|·). The measurement zk is supposed made
up with M sensory information z1

k , . . . , zM
k conditionally

independent given xk , so that the intermediate likelihoods
come as pm(zk |xk) = pm(zm

k |xk). Importantly, the particles
relative to the auxiliary vectors ξ1, . . . , ξM are not
sampled from d̃1(·|·), . . . , d̃M (·|·) but instead from dis-
tributions q̃1(·|·), . . . , q̃M (·|·) related to the importance

function q(xk |xk−1, zk) by q(xk |xk−1, zk) =∫
q̃M (xk |ξM−1, zM

k ) . . . q̃1(ξ1|xk−1, z1
k) dξ1 . . . dξM−1.

Incorporating each likelihood pm(zk |·) after applying the
intermediate dynamics leads to the algorithm depicted in
Table 4, with q̃m(ξm |ξm−1, zk) = q̃m(ξm |ξm−1, zm

k ) and
pm(zk |xk) = pm(zm

k |xk).

4 Importance and measurement functions

Importance sampling offers a mathematically principled way
of directing search according to visual cues which are discri-
minant though possibly intermittent, e.g. motion. Such cues
are logical candidates for detection modules and efficient
proposal distributions. Besides, each sample weight is upda-
ted taking into account its likelihood w.r.t. the current image.
This likelihood is computed by means of measurement func-
tions, according to visual cues (e.g. color, shape) which must
be persistent but may however be proner to ambiguity in clut-
tered scenes. In both importance sampling and weight update
steps, combining or fusing multiple cues enables the tracker
to better benefit from distinct information sources, and can
decrease its sensitivity to temporary failures in some of the
measurement processes. Measurement and importance func-
tions are depicted in the next subsections.

4.1 Measurement functions

4.1.1 Shape cue

The use of shape cues requires that silhouette templates of
human limbs have been learnt beforehand (Fig. 4). Each
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Table 4 Partitioned (PARTITIONED_PF) and hierarchi-
cal (HIERARCHICAL_PF) particle filtering: q̃m(ξm |ξm−1, zk)

and pm(zk |xk) are defined either as: (PARTITIONED_PF)

q̃m(ξm |ξm−1, zk) = d̃m(ξm |ξm−1), pm(zk |xk) = lm(zk |x1
k , . . . , xm

k ),
or: (HIERARCHI- CAL_PF) q̃m(ξm |ξm−1, zk) = q̃m(ξm |ξm−1, zm

k ),
pm(zk |xk) = pm(zm

k |xk)

[{x(i)
k , w

(i)
k }]N

i=1= PARTITIONED_OR_HIERARCHICAL_PF

(
[{x(i)

k−1, w
(i)
k−1, }]N

i=1
, zk

)

1: IF k = 0, THEN Draw x(1)
0 , . . . , x(i)

0 , . . . , x(N )
0 i.i.d. according to p(x0), and set w

(i)
0 = 1

N END IF

2: IF k ≥ 1 THEN —[{x(i)
k−1, w

(i)
k−1}]N

i=1
being a particle description of p(xk−1|z1:k−1)—

3: Set {ξ(i)
0 , τ

(i)
0 } = {x(i)

k−1, w
(i)
k−1}

4: FOR m = 1, . . . , M , DO

5: FOR i = 1, . . . , N , DO Independently sample ξ
(i)
m ∼ q̃m (ξm |ξ(i)

m−1, zk ) and associate ξ
(i)
m the weight τ

(i)
m ∝ τ

(i)
m−1

pm (zk |ξ(i)
m )d̃m (ξ

(i)
m |ξ(i)

m−1)

q̃m (ξ
(i)
m |ξ(i)

m−1,zk )
END FOR

6: Resample [{ξ(i)
m , τ

(i)
m }]N

i=1 into the evenly weighted particles set [{ξ(s(i))
m , 1

N }]
N

i=1; rename [{ξ(s(i))
m , 1

N }]
N

i=1 into [{ξ(i)
m , τ

(i)
m }]N

i=1
7: END FOR
8: Set {x(i)

k , w
(i)
k } = {ξ(i)

M , τ
(i)
M }, which is a consistent description of p(xk |z1:k )

.

.

.

(. . .): END IF

particle x is classically given an edge-based likelihood
p(zS|x) that depends on the sum of the squared distances
between Np points uniformly distributed along the template
corresponding to x and their nearest image edges [20], i.e.

p
(

zS|x
)

∝ exp

(
− D2

2σ 2
s

)
, D =

Np∑

j=1

|x( j) − z( j)|, (4)

where the similarity measure D involves each j th template
point x( j) and associated closest edge z( j) in the image, the
standard deviation σs being determined a priori.

A variant [17] consists in converting the edge image into a
Distance Transform image. Interestingly, the DT is a smoo-
ther function of the model parameters. In addition, the DT
image reduces the involved computations as it needs to be
generated only once whatever the number of particles invol-
ved in the filter. The similarity distance D in (4) is replaced
by

D =
Np∑

j=1

IDT( j), (5)

where IDT( j) terms the DT image value at the j-th tem-
plate point. Figure 5 plots this shape-based likelihood for an
example where the target is a 2D elliptical template corres-
ponding coarsely to the subject on the right of the input image.

Fig. 4 Shape cue

In case of cluttered background, using only shape cues for
the model-to-image fitting is not sufficiently discriminant, as
multiple peaks are present.

4.1.2 Color cue

Reference color models can be associated with the targe-
ted ROIs. These models are defined either a priori, or on-line
using some automatic detection modules. Let hc

ref and hc
x two

Nbi -bin normalized histograms in channel c ∈ {R, G, B},
respectively corresponding to the model and to a region Bx

parametrized by the state x . The color likelihood p(zC |x)

must favor candidate color histograms hc
x close to the refe-

rence histogram hc
re f . The likelihood has a form similar to (4),

provided that D terms the Bhattacharyya distance [30] bet-
ween the two histograms hc

x and hc
re f , i.e. for a channel c,

D(hc
x , hc

ref) =
⎛

⎝1 −
Nbi∑

j=1

√
hc

j,x · hc
j,ref

⎞

⎠
1/2

. (6)

A single histogram does not capture any information on the
spatial arrangement of colors and so can lead to noticeable
drift. This drift can be avoided by splitting the tracked region
into sub-regions with individual reference color models. Let

Fig. 5 Shape DT-based likelihood
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Fig. 6 a Color-based regions of
interest (ROIs) and
corresponding RGB histograms.
b, c Likelihoods regarding
single-part and multiple-part
color models, respectively

the union Bx = ⋃NR
p=1 Bx,p be associated with the set of NR

reference histograms {hc
ref,p : c ∈ {R, G, B}, p = 1, . . . , NR}.

By assuming conditional independence of the color measu-
rements, the likelihood p(zC |x) becomes

p(zC |x) ∝ exp

⎛

⎝−
∑

c

NR∑

p=1

D2(hc
x,p, hc

ref,p)

2σ 2
c

⎞

⎠ . (7)

Figure 6b and c plots single and multi-patch likelihoods for
the above example. The ROIs corresponding to the face and
clothes of the person on the right, are compared to their refe-
rence model shown in Fig. 6a.

4.1.3 Motion cue

For a static camera, a basic method consists in computing
the luminance absolute difference image from successive
frames. To capture motion activity, we propose to embed the
frame difference information into a likelihood model similar
to the one developed for the color measurements.

Pérez et al. in [33] define a reference histogram model
for motion cues. For motionless regions, the measurements
fall in the lower histograms bins while moving regions fall
a priori in all the histograms bins. From these considera-
tions, the reference motion histogram hM

ref is given by hM
j,ref =

1
N

′
bi

, j = 1, . . . , N
′
bi . The motion likelihood is set to

p(zM |x) ∝ exp

(
− D2(hM

x , hM
ref)

2σ 2
m

)
, (8)

and is illustrated on Fig. 7a, b, and c.

4.1.4 Multi-cues fusion

Fusing multiple cues enables the tracker to better benefit from
M distinct measurements (z1, . . . , zM ). Assuming that these
are mutually independent conditioned on the state, the unified
measurement function thus factorizes as

p(z1, . . . , zM |x) =
M∏

m=1

p(zm |x). (9)

Fig. 7 a Absolute luminance frame difference. b Motion histograms of
two ROIs (top, middle) and of a reference ROI (bottom). c Consequent
associated likelihood

Yet, to avoid the evaluation of the likelihood for each cue,
we hereafter propose some variants so as to combine multiple
cues into a single likelihood model.

4.1.5 Shape and motion cues combination

Considering a static camera, it is highly possible that the tar-
geted subject be moving, at least intermittently. To cope with
background clutter, we thus favor the moving edges (if any)
by combining motion and shape cues into the definition of
the likelihood p(zS, zM |x) of each particle x . Given

−→
f (z( j))

the optical flow vector at pixel z( j), the similarity distance
D in (4) is then replaced by

D =
Np∑

j=1

|x( j) − z( j)| + ρ · γ (z( j)), (10)

where γ (z( j)) = 0 (resp. 1) if
−→
f (z( j)) �= 0 (resp. if−→

f (z( j)) = 0) and ρ > 0 terms a penalty. Figure 8 plots
this more discriminant likelihood function for the example
seen above. The target is still the subject on the right, but is
assumed to be moving.

4.1.6 Shape and color cues combination

We propose in [7] a likelihood model p(zS, zC |x) which
combines both shape and color cues through a skin-colored
regions segmentation. The use of color features makes the
tracker more robust to situations where there is poor grey-
level contrast between the human limbs and the background.
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Fig. 8 Likelihood combining shape and motion cues

Numerous techniques for skin blobs segmentation are
based on a skin pixel classification (see a review in [44]) as
human skin colors have specific color distributions. Training
images from the Compaq database [23] enable to construct
a reference color histogram model [35] in a selected color
space. The originality of the segmentation method [7] lies in
the sequential application of two watershed algorithms, the
first one being based on chromatic information and the last
one relying on the intensity of the selected skin-color pixels.
This second phase is useful to segment regions with similar
colors but different luminance values (like hand and sleeve
in Fig. 9).

A new DT image I ′
DT is defined from the set of Canny

edges points IDT and from the contours of the segmented
skin blobs. The latters enable to define a mask applied onto
the original DT image IDT. Canny edges points which are
outside the mask are thus given a penalty in the DT image
I ′
DT as illustrated in Fig. 9d.

The similarity distance D in (4) is then replaced by

D =
Np∑

j=1

I ′
DT( j) + ρ · γ ( j), (11)

where γ ( j)=0 (resp. 1) if zmask( j)=1 (resp. if zmask( j)=0)
and ρ > 0 terms a penalty. This strategy makes the model
p(zS, zC |x) relevant even if skin colored regions are not fully
extracted or are not detected at all. Typically, overexposure
(close to a bay window) or underexposure (in a corridor)
make more uncertain the separation of the skin regions from
background. In these situations, all the edges have the same
strength in the DT image. More details on the segmentation
process can be found in [7].

4.2 Importance functions

4.2.1 Shape cue

We use the face detector introduced by Viola et al. [45] which
covers a range of ±45◦ out-of-plane rotation. It is based
on a boosted cascade of Haar-like features to measure rela-
tive darkness between eyes and nose/cheek or nose bridge.
Let B be the number of detected faces and pi = (ui , vi ),
i = 1, . . . , B, the centroid coordinate of each such region.
An importance function π(.) at location x = (u, v) follows,
as the Gaussian mixture proposal

π(x|zS) =
B∑

i=1

1

B
N

(
x ; pi , diag(σ 2

ui
, σ 2

vi
)
)

, (12)

where N (· ; µ,�) denotes the Gaussian distribution with
mean µ and covariance �.

4.2.2 Color cue

Skin-colored blobs detection is performed by subsampling
the input image prior to grouping the classified skin-like
pixels. Then, the importance function π(x|zC ) is defined
from the resulting blobs by a Gaussian mixture similar to (12).

4.2.3 Motion cue

The Bhattacharyya distance D(hM
x , hM

ref) to the reference
motion histogram hM

ref is evaluated on a subset of locations
obtained by subsampling the input image and keeping the
scale factor fixed. These locations are taken as the nodes of a
regular grid. Nodes that satisfy D2(hM

x , hM
ref) > τ are selec-

ted. The importance function π(x|zM ) is a Gaussian mix-
ture (12) centered on the detected locations of high motion
activity. Figure 10 reports an importance function derived
from the motion cues developed in Fig. 7a and b.

4.2.4 Multi-cues mixture

The importance function π(·) can be extended to consider
the outputs from any of the M detectors, i.e.

π(x|z1, . . . , zM ) = 1

M

M∑

j=1

π(x|z j ). (13)

Fig. 9 a Input image. b Map
of the skin color. c Skin blobs
segmentation. d DT image
after masking
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Fig. 10 Motion-based
importance function

Figure 11b shows an importance function based on two
detectors.

5 People tracking modalities

For our three visual modalities, the aim is to fit the tem-
plate relative to the tracked visitor all along the video stream,
through the estimation of its image coordinates (u, v), its
scale factor s, as well as, if the template is shape-based, its
orientation θ . All these parameters are accounted for in the
state vector xk related to the k-th frame. With regard to the
dynamics model p(xk |xk−1), the image motions of obser-
ved people are difficult to characterize over time. This weak
knowledge is thus formalized by defining the state vector
as xk = (uk, vk, sk, θk)

′
and assuming that its entries evolve

according to mutually independent random walk models, viz.
p(xk|xk−1) = N (xk ; xk−1, �), where N (· ; µ,�) terms
the Gaussian distribution with mean µ and covariance
� = diag(σ 2

u , σ 2
v , σ 2

s , σ 2
θ ).

5.1 Visual cues evaluation

A preliminary evaluation enables the selection of the most
meaningful visual cues associations in terms of discrimi-
native power, precision, time consumption and robustness
to artifacts (e.g. clutter or illumination changes), be these
cues involved in the importance or measurement functions.
Results are computed from a database of over than 400 images
acquired from the robot in a wide range of typical condi-
tions. For each database image, a “ground truth” is worked
out beforehand regarding the presence/absence and possibly
the location of a targeted moving head. The discriminative
power of a measurement (resp. importance) function is then

Fig. 11 a Skin blobs (blue) and face (red) detectors. b Importance
function mixing their outputs

computed by comparing the likelihood peaks (resp. the
detections) locations with the “true” target location. A peak
(resp. detection) in a region of interest around the target is
counted as a true positive while outside peaks (resp. detec-
tions) are considered as false positives. At last, a false nega-
tive occurs when no peaks (resp. no detections) are found
inside the region of interest.

5.1.1 Measurement functions

Figure 12 illustrates the average discriminative power of the
measurement functions depicted in Sect. 4.1, and Fig. 13
assesses their precisions. Function S1 (resp. S2) terms the
shape-based likelihood p(zS |xk) built upon the similarity dis-
tance (4) (resp. (5)). Function C1 is relative to the color-based
likelihood p(zC

k |xk) relying on the similarity distance (6).
The measurement functions S1C1 and S2C1 fuse shape and
color cues by multiplying their likelihoods according to (9).
Function S2C2 combines both shape and color cues through
the skin-colored regions segmentation detailed in [7]. S1M
combines shape and motion cues according to (10). Finally,
the functions S1MC1 and MC1 enable the fusion in (9) of all
or parts of the three aforementioned cues, respectively shape,
motion and color. As Fig. 13 shows, shape cues provide the
best accuracy, thus it is important to privilege shape-based
measurement functions.

In terms of discriminative power (Fig. 12), using only
one cue in the definition of a likelihood is a bad choice.
For example, the shape-based likelihoods S1, S2 are very
sensitive to clutter and thus generate a high false positives
rate in spite of their good true positives rates. To explain the
good results of the color-based likelihood C1, it is impor-
tant to notice that for each image of the database, a color
model is computed from the true target location so that no

S1 S2 C1 S1C1 S1M S2C1 S2C2 S1MC1 MC1
0

0.4
0.8
1.2
1.6

2
2.4
2.8
3.2
3.6

4
4.4
4.8
5.2
5.6

6
6.4
6.8
7.2
7.6

8

False positive
True positive
False negative

Fig. 12 Average number of detections relative to false positives, true
positives and false negatives, for various likelihood functions. The hori-
zontal red line depicts the mean target presence rate
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S1 S2 C1 S1C1 S1M S2C1 S2C2 S1MC1
0

0.7
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6.3

7
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9.8

10.5
11.2
11.9
12.6
13.3

14
Average error between the maximum likelihood and true position
Average error between the nearest significative peak and true position

Fig. 13 Average distance between the true target position and (1) the
maximum likelihood peak, (2) the nearest significative peak

color model drift is taken into account in the evaluation.
As expected, the more cues are involved in the definition
of a likelihood, the higher is its discriminative power. For
instance, the motion attribute can penalize motionless
contours due to the static background. Fusing color-based
likelihoods with shape-based likelihoods eliminates the
influence of background contours and makes conveniently
colored regions become more likely. Though the fusion stra-
tegy S1MC1 slightly increases the discriminative power, it
is not selected because of its important time consumption. Its
running time and these of the other measurement functions
are illustrated in Fig. 14.

Similar arguments lead to the rejection of S2C2. In fact,
the associations of either shape and color cues (S1C1, S2C1),
shape and motion (S1M) or color and motion (MC1) show
the best tradeoff between computational cost and discrimina-
tive power. These which enjoy the least time consumption,
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Fig. 14 Average running time per image for various likelihood func-
tions
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Fig. 15 Average detection rate relative to false positives, true positives
and false negatives for various importance functions. The red and blue
lines depict the real true positives rate and the frontal face recognition
rate in the database, respectively

namely S2C1, S1M and MC1, have been kept for future
evaluations.

5.1.2 Importance functions

Recall that the importance functions in Sect. 4.2 are relative
to face detection (yielding π(xk |zS

k ) and denoted F D),

motion detection (yielding π(xk |zM
k ) and denoted M D) or

skin blob detection (yielding π(xk |zC
k ) and denoted SB D).

The importance functions F M D, F SB D, SB M D mix all
or parts of the three aforementioned detectors thanks to (13).
Figure 15 illustrates the average discriminative power for
importance functions associated with a single detector or
merging the outputs from several detectors.

Though the F D importance function enjoys a high detec-
tion rate and a low false positives rate, it is unfortunately
restricted to frontal faces located in the H/R distances inter-
val [0.5 m; 3 m] to permit Haar-like feature extraction. For
such short and medium H/R distances1 (< 3m), the multi-
cues importance function F SB D, which associates F D and
SB D into (13), clearly enlarges the spectrum of detected
faces as its true positives rate is higher. Moreover, as repor-
ted in Fig. 16, the time consumption induced by SB D is
negligible compared to the one of F D. The performances
are significantly worse for M D, yet this detector is well-
suited for long-range H/R distances2 (>3 m) where shape
and skin-color are not sufficiently reliable to use F D-based
or SB D-based detectors.

In the selection of an importance function, strategies
enjoying a higher true positives rate are preferred. This

1 i.e. modalities #2 and #3 in Sect. 2.
2 i.e. modality #1 in Sect. 2.
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Fig. 16 Average computation time of one image for each importance
function. Note that this time is independent of the number of particles
involved in the tracking

ensures a sufficient number of particles to be sampled on
the target, despite some may be positioned on false detec-
tions. Consequently, the importance functions F SB D and
M D are considered as candidate elements of the aforemen-
tioned visual tracking modalities, to be characterized and
evaluated below.

5.2 Particle filtering strategies evaluations

The filtering strategies depicted in Sect. 3 must be exami-
ned in order to check which ones best fulfill the require-
ments of the considered H/R interaction modalities. For the
sake of comparison, importance functions rely on dynamics
or measurements alone (and are respectively noted DIF for
“Dynamics-based Importance Function” and MIF for
“Measurement-based Importance Function”), or combine
both (and are termed DMIF for “Dynamics and Measurement-
based Importance Function”). Further, each modality is eva-
luated on a database of sequences acquired from the robot in
a wide range of typical conditions: cluttered environments,
appearance changes or sporadic disappearance of the targeted
subject, jumps in his/her dynamics, etc. For each sequence,
the mean estimation error with respect to “ground truth”,
together with the mean failure rate (% of target loss), are com-
puted from several filter runs and particles numbers. The error
is computed as the distance (in pixels) between the estimated
position and the true position of the object to be tracked. It
is important to keep in mind that a failure is registered when
this error exceeds a threshold (related to the region of inter-
est), and is followed by a re-initialization of the tracker. Due
to space reasons, only a subset of the associated figure plots
is shown here. This analysis motivates our choices depicted
hereafter for the three visual tracking modalities. The pre-
sented results have been obtained on a 3 GHz Pentium IV
personal computer.

5.2.1 Face tracker (proximal interaction)

This modality involves the state vector xk = (uk, vk, sk, θk)
′
.

As the robot remains static, both shape and motion cues
are combined into the S1M measurement function. The
tracker is evaluated in nominal conditions, viz. under no
disturbance, as well as against cluttered environments and
illumination changes. A typical run is shown in Fig. 17.
Figures 18 and 19 plot the tracking failure rate as well as
tracking errors averaged over scenarios involving cluttered
backgrounds. Dynamics-based Importance Functions lead to
a better precision (about 10 pixels) together with a low fai-
lure rate, so that detection modules are not necessary in this
“easiest” context.

The AUXILIARY_PF strategy shows an higher time
consumption than the CONDENSATION algorithm though
with no improvement of the approximation of the poste-
rior. The increased computational cost is of course due to
the auxiliary sampling step. The fair performance comes
from the poorly informative dynamics model, see the end
of Sect. 3.3. This is why we opt for a CONDENSATION
algorithm, which can run at ≈ 40 Hz for N = 200 particles
(Fig. 20).

The parameters values of our face tracker are listed in
Table 5. The standard deviations of the Gaussian noises entai-
led in the random walk dynamics are set using classical
arguments relating them to the admissible evolution of the
template between two consecutive images. The standard
deviations of the importance functions come from an offline
prior study of the underlying detectors, as was done in [21].
The parameter σs involved in the shape-based likelihood
(and, in Tables 6, 7, the parameters σc, σm involved in the
color-based and motion-based likelihoods), are defined as
follows: first, for each element of an image database, a
“ground truth” is determined by manually adjusting the
template position, orientation and scale; then the distances
involved in the various likelihoods are computed for several
perturbations of the template parameters around their “true”
values; assuming that these distances are samples of a Gaus-
sian centered on 0 enables the estimation of σs, σc, σm . The
remaining coefficients, including the number of particles,
are selected by trial-and-error, so as to ensure overall good
performance of the tracker while limiting its computational
cost.

5.2.2 Upper human body tracker (guidance mission)

This modality involves the state vector xk = (uk, vk, sk)
′
—

the orientation θk being set to a known constant—as well as
two color models hc

ref,1,hc
ref,2, respectively corresponding to

the head and the torso of the guided person, in the measure-
ment function (7). To overcome appearance changes of these
ROIs in the video stream, their associated color models are
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Fig. 17 Tracking scenario with
CONDENSATION over a
cluttered background. The red
template depicts the MMSE
estimate
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Fig. 18 Average failure rate versus number of particles on sequences
involving cluttered background
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Fig. 19 Tracking errors versus number of particles on sequences invol-
ving cluttered background

updated online through a first-order discrete-time filtering
process entailing the state estimate i.e.

hc
ref,k = (1 − κ) · hc

ref,k−1 + κ · hc
E[xk ], (14)
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Fig. 20 Average time consumption versus number of particles on all
sequences for several strategies

where κ weights the contribution of the mean state histo-
gram hc

E[xk ] to the target model hc
ref,k−1 and index p has

been omitted for compactness reasons. Drift and possible
subsequent target loss are experienced in any tracker which
involves models updating. To avoid this, the particles weigh-
ting step considers the likelihood S2C1 which fuses, thanks
to (9), color distributions cue but also shape cue relatively to
the head silhouette (Fig. 4).

Given the H/R interaction distance and the evaluations
results in Sect. 4.2, the common importance function of
ICONDENSATION and RBSSHSSIR strategies is based on
color blobs and face detectors, namely F SB D. These propo-
sals permit automatic initialization when persons appear or
re-appear in the scene and improve the recovery of deadlocks
induced by target loss.

In nominal conditions, all the particle filtering strategies
lead to a similar precision and failure rate. Experiments on
sequences including appearance or illumination changes,
such as the two runs reported in Fig. 21, also show
similar results. Indeed, fusing shape and color cues in the

Table 5 Parameter values used in our face tracker

Symbol Meaning Value

(σu , σv, σs , σθ ) Standard deviation of the random walk dynamics noise on the state vector xk = (uk , vk , sk , θk)
′

(15, 6, 0.01, 0.3)

σs Standard deviation in likelihood S1M combining shape and motion cues 36

ρ Penalty in Eq. (10) 0.12

N Number of particles 150
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Table 6 Parameter values used in our upper human body tracker

Symbol Meaning Value

(α, β) Mixture coefficients in the importance function q(xk |xk−1, zk) along Eq. (2) (0.3, 0.6)

(σu , σv, σs) Standard deviation of the random walk dynamics noise on the state vector xk = (uk , vk , sk)
′

(11, 6,
√

0.1)

(σui , σvi ) Standard deviation in importance function π(xk |zS) for F D-based detector (6, 6)

(σui , σvi ) Standard deviation in importance function π(xk |zC ) for SB D detector (6, 6)

σs Standard deviation in shape-based likelihood p(zS
k |xk) 25

NR Number of patches in p(zC
k |xk) 2

σc Standard deviation in color-based likelihood p(zC
k |xk) 0.03

Nbi Number of color bins per channel involved in p(zC
k |xk) 32

κ Coefficients for reference histograms hc
ref,1, hc

ref,2 update in Eq. (14) (0.1, 0.05)

N Number of particles 150

Table 7 Parameter values used in our whole human body tracker

Symbol Meaning Value

(α, β) Mixture coefficients in the importance function q(xk |xk−1, zk) along Eq. (2) (0.3, 0.6)

(σu , σv, σs) Standard deviation of the random walk dynamics noise on the state vector xk = (uk , vk , sk)
′

(7, 5,
√

0.1)

ν Threshold for importance function π(xk |zM
k ) 10

(σui , σvi ) Standard deviation in importance function π(xk |zM ) for M D-based detector (8, 8)

σm Standard deviation in motion-based likelihood p(zM
k |xk) 0.2

N ′
bi Number of motion bins involved in p(zM

k |xk) 32

σc Standard deviation in color-based likelihood p(zC
k |xk) 0.03

Nbi Number of color bins per channel involved in p(zC
k |xk) 32

NR Number of patches in p(zC
k |xk) 1

κ Coefficient for reference histogram hc
ref update in Eq. (14) 0.1

N Number of particles 150

measurement function improves the discriminative power so
that in these contexts, a robust tracking can be performed
whatever the used particle filtering strategy.

Experiments on sequences including additional sporadic
disappearances (due to the limits of the camera field of view)
or jumps in the target dynamics highlight the efficiency of
ICONDENSATION/RBSSHSSIR strategies in terms of fai-
lure rate (Fig. 22). In fact, these two strategies, by drawing
some particles according to the output from detection

modules, permit automatic initialization and aid recovery
from transient tracking failures. In addition, the
RBSSHSSIR filter leads to a slightly better precision than
ICONDENSATION. This is a consequence of the more effi-
cient association of subparticles sampled from the proposal
with plausible predecessors thanks to the intermediate resam-
pling stage (step 6 in Table 3).

Experiments on sequences including spurious detections
due to the presence of another non-occluding person in the

Fig. 21 Tracking scenario
involving illumination (top)
or appearance (bottom)
changes with
DMIF-ICONDENSATION.
The blue (resp. red) rectangles
depict the particles (resp. the
MMSE estimate)
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Fig. 22 Average failure rate versus number of particles on sequences
including jumps in the target dynamics
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Fig. 23 Average failure rate versus number of particles on sequences
including a spurious detection without occlusion

camera field of view, bring out that Measurement-based
Importance Functions lead to a worse failure rate (Fig. 23).
Conversely, the DMIF strategies ensure a proper tracking
thanks to the sampling of some particles from the dynamics.

To illustrate these observations, Fig. 24 shows a tracking
run including two persons for MIF-ICONDENSATION
(Fig. 24, top) and DMIF-ICONDENSATION (Fig. 24, bot-
tom). In the MIF-ICONDENSATION case, only the non-
targeted person is detected so that the importance function
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Fig. 25 Average failure rate versus number of particles on sequences
including two people occluding each other

draws all the particles on wrong regions, leading to a failure
on and after the third frame.

Experiments on sequences which involve two people
occluding each other highlight the efficiency of the
ICONDENSATION/RBSSHSSIR strategies in terms of fai-
lure rate (Fig. 25).

DIF strategies lead to track the person on the foreground
(Fig. 26, top), whereas ICONDENSATION/RBSSHSSIR
strategies keep locking on the right target throughout the
sequence (Fig. 26, bottom) thanks to the sampling of some
particles according to the visual detectors outputs, and to the
discriminative power of the measurement function.

The above experiments emphasize the necessity of taking
into account both the dynamics and the measurements so that
the tracking can be robust and efficient enough in all consi-
dered scenarios related to the guidance modality. Therefore,
the DIF and MIF particle filtering strategies are excluded in
this context. Even if DMIF-ICONDENSATION and DMIF-
RBSSHSSIR are well suited and have similar time consump-
tion (Fig. 27) for the used number N of particles (between
100 and 200), we finally adopt DMIF-RBSSHSSIR for this
guidance modality because of its slightly better performances
compared to DMIF-ICONDENSATION. The parameters
reported in Table 6 are used in the likelihoods, proposal and
state dynamics involved in our upper human body tracker.

Fig. 24 Tracking scenario
involving two people with
MIF-ICONDENSATION (top)
and DMIF-ICONDENSATION
(bottom). On the third top frame
the targeted person is not
detected while the undesired
person remains detected

123



Particle filtering strategies for data fusion dedicated to visual tracking from a mobile robot

Fig. 26 Tracking scenario
involving occlusions with
CONDENSATION (top) and
DMIF-RBSSHSSIR (bottom)
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Fig. 27 Average time consumption versus number of particles on all
sequences for several strategies

5.2.3 Person tracker (search for interaction)

As was the case in the above section, the state vector has
the form xk = (uk, vk, sk)

′
. Color and motion cues are fused

into the global measurement function (9) as the robot is sup-
posed motionless. The selected importance function M D
is defined from the motion detector output. Relying on the
conclusions concerning the guidance modality, only DMIF-
ICONDENSATION and DMIF-RBSSHSSIR are evaluated.
As the Hierarchical Particle Filter (HIERARCHICAL_PF)
defined in [33] constitutes an alternative to these strategies,
it is also assessed. Thanks to its intermediate sampling (step
6 in Table 4), which enables the particles cloud to remain
more focused on the target, it results in a significant decrease
of the tracking error under nominal conditions, as illustrated
in Fig. 28. In this helpful case, a slightly better failure rate is
also observed as shown in Fig. 29.

Experiments on sequences including a full occlusion of
the moving target by a static object (Fig. 32) highlight the effi-
ciency of DMIF-ICONDENSATION/DMIF-RBSSHSSIR
strategies in terms of of failure rate compared to the
HIERARCHICAL_PF strategy (Fig. 30). Though some par-
ticles are sampled on the targeted person by the motion-
based importance function (M D) as soon as he/she reappears
after an occlusion, the HIERARCHICAL_PF strategy fails
(Figs. 31, 32). Indeed, as these particles lie in the tails of the
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Fig. 28 Tracking errors versus number of particles in nominal condi-
tions
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Fig. 29 Average failure rate versus number of particles in nominal
conditions

dynamics pdf, they are affected small weights and thus get
eliminated during the first resampling step of the algorithm
(step 6 in Table 4). Meanwhile, the other filtering strategies
which rely on Dynamics and Measurement based importance
functions can perform the tracking.

Similar conclusions hold when the target is motionless and
subject to occlusion (Figs. 33, 34). This can again be explai-
ned by the action of its first resampling step which concen-
trates particles on high motion activity regions. Figures 35

123



L. Brèthes et al.

0 100 200 300 400 500 600 700 800 900
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of particles

F
ai

lu
re

 r
at

e
ICONDENSATION (DMIF)
RBSSHSSIR (DMIF)
HIERARC

Fig. 30 Average failure rate versus number of particles on sequences
including an occlusion by a static object

0 100 200 300 400 500 600 700 800 900
11

11.5

12

12.5

13

13.5

14

14.5

15

15.5

Number of particles

A
ve

ra
ge

 e
rr

or

ICONDENSATION (DMIF)
RBSSHSSIR (DMIF)
HIERARC

Fig. 31 Tracking errors versus number of particles on sequences
including an occlusion by a static object

and 36 present two tracking scenarios involving several per-
sons with mutual occlusions. In the first scenario, the
HIERARCHICAL_PF tracker locks onto the undesired per-
son, because only regions of high motion activity which are
in the modes of the system dynamics pdf are explored by its
first step. Regions corresponding to the target, even if they
do comply with the color model, are thus discarded during
the resampling procedure. In contrast, the RBSSHSSIR tra-
cker which doesn’t dissociate motion and color cues, keeps
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Fig. 33 Average failure rate versus number of particles on sequences
including target occlusions
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Fig. 34 Tracking errors versus number of particles on sequences
including target occlusions

locking on the targeted person. The second scenario leads to
the same observations and confirms the RBSSHSSIR effi-
ciency. The two filters DMIF-ICONDENSATION/DMIF-
RBSSHSSIR are well-suited to this modality. As robustness
is preferred to precision for our application, we finally opt
for the DMIF-RBSSHSSIR algorithm. The fixed parameters
involved in the likelihoods, proposal and state dynamics of
our human body tracker are given in Table 7.

Fig. 32 Tracking scenario
involving full occlusion
by a static object with
DMIF-RBSSHSSIR (top) and
HIERARCHICAL_PF (bottom)
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Fig. 35 Tracking scenario
involving occlusion of the
motionless target by another
person crossing the field of view
with DMIF-RBSSHSSIR (top)
and HIERARCHICAL_PF
(bottom)

Fig. 36 A scenario involving
persistent occlusions due to
persons. Tracker based on a
DMIF into the RBSSHSSIR
algorithm
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Fig. 37 Rackham’s software architecture

6 Integration on Rackham robot

6.1 Outline of the overall software architecture

The above visual functions were embedded on the Rack-
ham robot. To this aim, Rackham is fitted with the “LAAS”
software architecture introduced in Fig. 37 and thoroughly
presented in [1].

On the top of the hardware (sensors and effectors), the
functional level encapsulates all the robot’s action and per-
ception capabilities into controllable communicating
modules, operating at very strong temporal constraints. The
executive level activates these modules, controls the embed-
ded functions, and coordinates the services depending on the
task high-level requirements. Finally, the upper decision level
copes with task planning and supervision, while remaining
reactive to events from the execution control level.

In addition to functional modules dedicated to extero-
ceptive sensors handling, e.g. cameras, laser and ultrasonic
telemeters,…, low-level servo algorithms, elementary navi-
gation functions, etc.[5], a module named ICU—for “I see
you”—has been designed which encapsulates all the afore-
mentioned tracking modalities. It is depicted below.

6.2 Considerations about the ICU software architecture

The C++ implementation of the module ICU is integrated in
the “LAAS” architecture using a C/C++ interfacing scheme.
It enjoys a high modularity thanks to C++ abstract classes and
template implementations. This way, virtually any tracker
can be implemented by selecting its components from pre-
defined libraries related to particle filtering strategies, state
evolution models, and measurement/importance functions.
For more flexibility, specific components can be defined and
integrated directly.

ICU sequentially invokes the tracking components
through its processing pipe, as illustrated in Figure 38. So,
the functions shared by several trackers running in parallel
are processed only once.

Section 6.3 enumerates all the visual functions provided
by the module ICU, which not limited to tracking. Section 6.4
details the way how they are entailed in the tour-guide scena-
rio, and discusses the automatic switching between trackers.

Target
detection

Features
extraction

Image
acquisition

Target
recognition

Modality
update filtering

ParticleDisplay
results

Compute

321 4

8 57 6

heuristics

Fig. 38 Sequencing the module ICU
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Fig. 39 Snapshots of detected (red)/recognized (green) faces with
associated probabilities. The target is named Sylvain in this example

6.3 Visual functions provided by the module ICU

These can be organized into three broad categories:

1. Functions related to human body/limbs detection: Inde-
pendently from the tracking loop, F D-based or M D-
based detectors (see Sect. 4.2) can be invoked depending
on the current H/R distance and the scenario status.

2. Functions related to user face recognition: The face
recognition process underlies the following functions

– a face learning function based on the F D-based
detector in order to train the classifier.

– a face classification function based on these training
samples and eigenfaces representation [38]. The face
recognition probability associated with each detec-
ted face can be integrated both in the face and upper
human body trackers. Some recognition snapshots
are reported in Fig. 39. Further details can be found
in [16].

– a user presence function updates a presence table
of the 30 previously learned robot users. The table
update is similar to a FIFO stack, i.e. the oldest user
added in the table is handled next.

3. Functions related to user tracking: These are

– the three tracking functions characterized and evalua-
ted in Sect. 5. Recall that they have been designed so
as to best suit to the interaction modalities of Sect. 2.

– an estimator of the H/R distance of the targeted person
from the scale of the updated template during the
tracking.

The robot activates these functions depending on the cur-
rent H/R distance, user identification and scenario sta-
tus. The next subsection details the way how they are
scheduled.

6.4 Heuristic-based switching between trackers

A finite-state automaton can be defined from the tour-guide
scenario outlined in Sect. 2, as illustrated in Fig. 40. Its four
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Fig. 40 Transitions between tracking modalities

states are respectively associated to the INIT mode and to the
three aforementioned interaction modalities. Two heuristics
relying on the current H/R distance and the face recogni-
tion status allow to characterize most of the transitions in the
graph. Practically, outcomes from the face classifier and H/R
distance functions are filtered on a sliding temporal window
Wt of about 20 samples. The robot in INIT mode invokes
the motion-based detector (MD), so that any visitor entering
the exhibition initializes the whole body tracking (arrow 1).
The robot assumes that the visitor is willing to interact when
he/she has come closer and has got detected by the frontal
face F D-detector over Wt . If so, the upper human body tra-
cking mode is launched (arrow 3). If the user H/R distance
keeps decreasing to less than 1m and his/her face remains
detected/recognized, a “proximal interaction” begins, entai-
ling the face tracker (arrow 6). The face learning function
and the human presence table update function are possibly
invoked if the user is unknown. When starting the “guidance
mission”, the robot switches to the upper human body tracker
(arrow 5). Temporary target loss are notified when the face
classifier fails for more than 70% of the 20 images compo-
sing Wt . Re-identification of the guided visitor in the next Wt

is required in order to resume the ongoing mission. Finally,
the robot returns in INIT mode when: (1) no moving blobs
are detected, (2) the current user hasn’t been recognized over
Wt , (3) the end mission is signified by the robot (arrows 2, 7
and 8).

Thanks to its efficient modular implementation, all the
ICU functions can be executed in real time on our robot.
Experiments show their complementary and efficiency in
cluttered scenes.

7 Conclusion

This paper has introduced mechanisms for visual data fusion/
combination within particle filtering to develop people tra-
ckers from a single color camera mounted on a mobile robot.
Most particle filtering techniques to single-target tracking
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have been surveyed and tested. A first contribution concerns
visual data fusion for the considered robotics scenarios, a
context which has fairly seldom exploited particle filtering
based solutions. The most persistent cues are used in the
particles weighting stage. The others, logically intermittent,
permit automatic initialization and aid recovery from tran-
sient tracking failures. Mixing these cues both into the
importance and measurement functions of the underlying
estimation scheme, can help trackers work under a wide range
of conditions encountered by our Rackham robot during its
displacements. A second contribution relates to the evalua-
tion of dedicated particle filtering strategies in order to check
which people trackers, regarding visual cues and algorithms
associations, best fulfill the requirements of the considered
scenarios. Let us point out that few studies comparing the
efficiency of so many filtering strategies had been carried
out in the literature before. A third contribution concerns the
integration of all these trackers on a mobile platform, whose
deployment in public areas has highlighted the relevance and
the complementarity of our visual modalities. To our know-
ledge, quite few mature robotic systems enjoy such advanced
capabilities of human perception.

Several directions are currently investigated. First, we
study how to fuse other information such as laser or sound
cues. The sound cue would not just contribute to the loca-
lization in the image plane, but will also endow the tracker
with the ability to switch its focus between speakers. A next
issue will concern the incorporation of appropriate degrees
of adaptivity into our multiple cues based likelihood models
depending on the target properties changes or the current
viewing conditions [40]. In addition, our tracking modali-
ties will be made much more active. Zooming will be used
to actively adapt the focal length with respect to the H/R
distance and to the current active visual modalities. Finally,
the tracker will be enhanced so as to track multiple persons
simultaneously [27,42].
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