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Abstract— In this paper, we present a visual human motion
capture (HMC) system embedded on a mobile robot. The
estimation of the 3D location and configuration of our 14 DOF
model of the upper human body is performed with a particle
filter. We use a stereoscopic camera to derive appearance based
visual cues together with 3D measurements computed from a
sparse 3D reconstruction. A comparative study is carried out
in order to achieve the best association between measurement
cues and filtering strategies in our robotics context. The system
performs in real-time in various indoor environments.

I. INTRODUCTION

A major challenge of Robotics is undoubtedly the personal
robot, with the perspective for such an autonomous mobile
platform to serve humans in their daily life. In such a context,
human motion capture (HMC) systems are of great interest as
they enable the robot to localize the human and to analyze
his/her configuration. HMC constitutes the groundwork of
many activities such as interpretation of tasks, poses or
motions, coordinated object manipulation, imitation learning.
Embedding HMC systems thanks to conventional cameras
mounted on a robot would give it the ability to act in
a socially and human aware way, and enable the user to
communicate thanks to a natural and rich means.

Besides,3D tracking from a mobile platform is a very
challenging task, which imposes several requirements. First,
the embedded sensors are positioned close to each other
and so cover a narrow field of view comparatively to multi-
ocular systems. As the robot’s evolution takes place within
a wide variety of environmental conditions, background
modeling techniques [1], [2], [3] are precluded and the
tracker gets inevitably faced with ambiguous data. Moreover,
frequent occurrences of mutual occlusions between limbs re-
quire automatic (re-)initialization procedures. Clearly, several
hypotheses must be handled simultaneously, and a robust
integration of multiple visual cues is necessary. Finally,on
board processing power is limited and care must be taken to
design computationally efficient algorithms.

All these problems result in very few fully integrated
3D HMC systems on interactive robots. Consequently, our
challenge is to design an HMC system which copes with the
above robotics requirements. To tackle this problem, various
methods have been proposed in the literature.

Most of the existing approaches have concentrated on
3D articulated models of the tracked human limbs in order
to make the problem more tractable (see a survey in [4]).
They essentially differ in the sensor setup and the associated
data processing so that two main classes can be exhibited.
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On the one hand approaches based on3D reconstruction
aims at fitting the articulated model on the3D point cloud
issued from a3D sensor system,e.g.a stereo head [5] or a
Swiss Ranger [6]. On the other hand, the appearance-based
approaches infer the model pose and configuration from
its projection in monocular [7], [3] or multi-ocular [1], [2]
image sequences. These last strategies enable the derivation
of abundant appearance information from the image contents,
yet they may misestimate the motion-in-depth. This is so
when using a single camera, or even a short-baseline stereo
camera setup such as these widely used in mobile robotics.
Our approach aims at mixing advantages of both appearance-
based and 3D reconstruction methods.

Regarding the estimation process, Monte Carlo simulation
methods, also known as particle filters (PF) [8] have proved
well suited to our context. Indeed, they make no restrictive
assumption on the probability distributions entailed in the
characterization of the problem, and permit an easy fusion of
diverse kinds of measurements. The main drawback for con-
ventional PFs remains the number of required particles which
increases exponentially with the state-space dimensionality.
To tackle this problem, various search space decomposition
techniques have been proposed together with more efficient
sampling methods [1], [9].

In front of all these various approaches and in order to
setup an embedded HMC system, we propose a quantitative
evaluation of many state-of-the-arts methods so as to find
out which combination of filtering strategy and measurement
cues performs best.

The paper is organized as follows. Section II presents our
robot and the system architecture. Then, sections III and
IV respectively present the compared filtering strategies and
the measurements cues. Associated evaluations together with
some screenshots of the final system are presented in section
V. Last, section VI summarizes our contribution and puts
forward some future extensions.

II. SYSTEM ARCHITECTURE

We have set up the experiments on our JIDO robot. This
MP-L655 platform from Neobotix is a mobile manipulator
robot designed to interact with human beings. It embeds
many sensors among which laser scanners and two stereo
camera banks. In this paper, we use stereo cameras mounted
on a pan-tilt unit at the top of its mast in order to exploit
a larger field of view. A classical interaction context is
presented on Fig. 1. JIDO is fitted with the Genom software
architecture thoroughly presented in [10].

Our tracking system is implemented in a module named
“HMC” fully integrated in the existing architecture. Its inner
function is detailed in Fig. 2. First, it reads the stereo images



Fig. 1. A typical situation of Human-Robot interaction. The upper right
part of the image represents the robot perception and the superimposed
avatar is the estimated configuration.

Fig. 2. The HMC module implementation.

from the camera. Some classical enhancement routines are
applied in thepreprocessing module: white balance (in
order to lower illumination changes), distortion correction,
image crop and resize, . . . Then, theprocessing module is
in charge of extracting relevant information from the images
using more or less classical visual cues (edge detection,
motion flow, . . . ). Thefiltering module finally estimates the
3D human pose thanks to a PF scheme, taking into account
some prior dynamics and the extracted visual cues which are
evaluated through themeasurement module.

As we aim at proposing a markerless embedded HMC
system, we focus on the tracking of the upper human
body. Indeed, interactions rely mainly on hand and head
movements. Thus, our model includes the torso, the head
and the arms. We suppose that the head is fixed w.r.t. the
torso because estimating head orientation needs very precise
cues and the adopted image resolution is not sufficient to do
so. The model is based on a kinematic tree consisting of5
body segments and14 DOF (6 for global localization and
orientation,3 for each shoulder and1 for each elbow). It
is fleshed out using truncated cones with fixed dimensions.
These geometric primitives are easily handled and hidden
part removal can be obtained in closed form. As our body
model must be able to suit various subjects, member size are
fixed to the human average. We assume Gaussian random
walk prior dynamics.

The challenge here is to combine measurement cues and
filtering strategies in the best way to provide a reliable
tracking system under real-time constraints. To this end, we

compare various combination of visual cues and filtering
algorithms, which are presented below.

III. PARTICLE FILTER FRAMEWORK

A. Basics

In a stochastic Bayesian filtering approach to motion
capture, the 3D template situation and configuration param-
eters to be estimated are first incorporated in a state vector
xk, whose (given) initial probability density function (pdf)
and prior dynamics write asp0(x0) and p(xk|xk−1). At
any time k, the available visual data, symbolized byzk,
is related to xk by the observation densityp(zk|xk).
Due to the high number of degrees of freedom (DOF)
of the underlying articulated 3D model and to the diffi-
culty to assess its projection onto the current images, the
posterior pdf p(xk|z1:k) to be estimated is multimodal,
defined in an high-dimensional state space, and unavail-
able in closed-form. A point-mass (or particle) approxima-
tion p(xk|z1:k) ≈

∑N

i=1 w
(i)
k δ(xk − x

(i)
k ),

∑N

i=1 w
(i)
k = 1 is

then recursively propagated along time through sequential
Monte Carlo estimation methods [8], [11]. An approxima-
tion of the minimum mean-square error estimate (MMSEE)
E(xk|z1:k) follows.

The celebrated “Sampling Importance Resampling” (SIR)
algorithm [8] operates in three major steps. First, the particles
x

(i)
k , i = 1..N are drawn from an importance function

q(xk|x
(i)
k−1, zk), selected to adaptively explore relevant areas

of the state space. Then, the weightsw
(i)
k are updated

to ensure the consistency of the point-mass approximation
of the posterior pdf taking into account the observation
density. Last, when the approximation tends to degenerate,a
resampling stage is inserted. Importantly, the SIR framework
encompasses the CONDENSATION [11] as well as impor-
tance sampling from the images. We present below some less
well-known algorithms than the classical CONDENSATION
or APF [1].

B. PARTITIONED particle filter

Contrarily to a common belief, the computation time of
a particle filter for general problems, though linear in the
number of particles, is exponential in the system order for a
fixed dimension-free error [12]. To lower this complexity,
many algorithms have been proposed. When the system
dynamics comes as the sequence ofM partial evolutions
pm(xm

k |xm−1
k ) of the state vectorxm

k at stepm and when
intermediate likelihoodslm(xm

k |zk),m = 1..M, can be as-
sessed after applying each partial dynamics, PARTITIONED
schemes apply [9].

From a succession of sampling operations followed by
resampling based on the intermediate likelihoods, the particle
cloud can be successively refined towards areas of the state
space in which the posterior is dense. The computational
complexity then becomes linear in the number of partitions.
It can be applied for hierarchical systems where the root
has to be placed before the leaves,i.e. arm/fist/fingers, or
torso/arms in our case.



TABLE I

PARTITIONED QRS:PARTITIONED PARTICLE FILTER EXPLOITING

QMC TECHNIQUES.
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8: END FOR
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10: END FOR
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12: Approximate the MMSEEE(xk|z1:k) by
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13: END IF

C. Quasi Monte Carlo filtering methods

Pure random importance sampling leads to “gaps and
clusters” in the particle support, especially in high-dimension
spaces. An excessive Monte Carlo variation of the predictions
can follow, making the filter unreliable or even leading to
failures. Substituting the random particles by a deterministic
or randomized low-discrepancy—or “Quasi Monte Carlo”
(QMC)—sequence can lead to a better convergence rate w.r.t.
the number of particlesN , while lowering the root mean
square (RMS) estimation error and leading to a variability
reduction from 5% to 20% [13], [14].

Among the main issues on QMC filters are the difficulty to
design low-discrepancy sequences in spite of the resampling
steps, the exploitation of the current measurement in the
definition of these sequences, and the possible trade-off
between the reduction of the (quadratic) complexity and
the mathematical soundness of the algorithms. A QMC
counterpart of CONDENSATION, henceforth termed QRS
(for Quasi Random Sampling), is proposed in [15]. We
adapted this idea to the PARTITIONED filter proposed in
[9]. The final algorithm is described Table I. The key idea
here is to gather importance sampling and resampling stages.
This enables the generation of low discrepancy sequences
from a particle to be resampled, thus resulting in a more
regular state space exploration.

IV. MEASUREMENT CUES

A. Likelihood sub-functions

Our likelihood functionp(zk|xk) involved in the filtering
algorithm relies on the use of appearance-based cues and
geometric features. Some more or less widely used atomic
likelihood functions are described below.

1) Color histogram: As in [16], we associate color his-
tograms toNC specific regions of interest (ROI) on our body
model. For a given state hypothesisxk, the likelihood is
computed through

p(zC
k |xk) ∝ exp

(
−

D2

2σ2
C

)
, D =

1

NC

NC∑

i=1

B(cxk,i, ci),

where B denotes the Bhattacharyya distance,cxk,i is the
color histogram modeling the image appearance of theith

ROI on the projected model under hypothesisxk, ci is the
reference histogram, learnt on the first frame, andσC the
a priori standard deviation of our Gaussian measure model.
We chose to set up ROIs on the middle of arms, forearms
and torso for a better learning of the model appearance.

2) Edge distance:The shape related likelihood is clas-
sically computed using the sum of the squared distances
between model points and the nearest image edges [11].
TheseNp model pointspxk,i, i ∈ {1, . . . , Np} for a config-
urationxk are chosen to be uniformly distributed along the
model projected segments. Edges of the image are extracted
with a Canny detector. The result can be filtered with a
movement mask in order to focus on moving edges. In some
implementations, the image can be converted into a Distance
Transform image, notedIED, which is used to pick the
distance value [17]. The likelihood of a state hypothesisxk

is given by

p(zED
k |xk) ∝ exp

(
−

D2

2σ2
ED

)
, D =

1

Np

Np∑

i=1

IED(pxk,i),

whereIED(pxk,i) is the associated value in the edge distance
image,

3) Skin color distance:Hands of the subject play a great
role in the interaction process. Moreover, their motions are
often faster than these of the other body parts as they
constitute the ends of our kinematic chains. Consequently,we
set up an additional visual cue dedicated to their location.
A skin color probability imageIS is computed thanks to
the back-projection of an offline learnt skin color histogram.
High probability zones correspond to the head and hands. As
is the case for the previous cue, we can filter the probability
map with a movement mask and build a skin distance image
ISD from the detected skin blobs. The associated likelihood
of a state hypothesisxk is then computed by

p(zSD
k |xk) ∝ exp

(
−

D2

2σ2
SD

)
,D =

1

3

3∑

i=1

ISD(hxk,i),

wherehxk,i, i ∈ {1, 2, 3} are the2D coordinates of hands
and head after model projection.

4) 3D skin blob distance:To complete the above visual
cues and to improve the motion-in-depth estimation, we
add a geometric3D information issued from a sparse3D
reconstruction. In the vein of [18], we compute the 3D
positionsĤj = (Xj , Yj , Zj)

′

of the person hands and head
(j ∈ {1, 2, 3}) : skin color blobs are extracted from each
skin probability image (if many small blobs are near enough
they are merged), and they are matched in the stereo images



according to criteria defined in [19] and triangulation is
performed. We define :

p(z3D
k |xk) ∝ exp

(
−

D2

2σ2
3D

)
,D =

1

3

3∑

i=1

||Hxk,i − Ĥji
||2,

where ||Hxk,i − Ĥji
||2 is the Euclidean distance between

the mass center̂Hji
of blob ji (ji ∈ {1, . . . , NBlob}) and

the 3D position Hxk,i of a hand or the head of the model
under hypothesisxk. Link betweeni and ji is done by a
simple heuristics involving detected blob 3D position and a
face detector [20]. In some cases, we cannot triangulate the
3D positions of hands and head (too low number of detected
blobs, triangulation error too high, . . . ). Consequently,3D
information cannot be exploited, and the2D skin color
distance is then the only cue enabling hand localization.

Assuming all the above likelihoods are mutually inde-
pendent conditioned on the statexk, the unified likelihood
factorizes as :

p(zk|xk)=p(zC
k |xk)p(zED

k |xk)p(zSD
k |xk)p(z3D

k |xk).

In the next section, we present the evaluations of these
measurement cues together with various filtering strategies.

V. ROBOTICS EXPERIMENTS

Evaluations are performed in order to check which HMC
strategy, regarding visual cues and PF algorithms, best fulfill
our robotics requirements.

A. Quantitative evaluations

30 runs of the tracker are performed on4 different
sequences including various movement types (arm waving,
object manipulation, fitness...). Results of our system are
compared to a groundtruth acquired thanks to a commercial
HMC system from Motion Analysis [21]. We study the RMS
(root mean square) error, which is the distance between the
3D average joint position of the estimated model and the true
3D joint positions given by the commercial HMC.

Concerning the visual cues comparison, our basis system
focuses on the classical moving edges only (zED

k ) through
a CONDENSATION with 1000 particles. The tracking is
not satisfactory with an average RMS error greater than
40 cm per joint. It appears that adding2D skin color blob
detection (zSD

k ) greatly improves the estimation RMS error
(until 24 cm per joint). The constraints imposed on the end
of the kinematic chains enable a more robust tracking of the
hands. This speaks in favor of the combination of global and
local attributes.

Moreover, the use of sparse3D reconstruction to localize
the hands and the head (z3D

k ) lowers the estimation RMS
error of 10 cm, mainly on theZ axis. Thus, mixing2D and
3D cues enable a better behavior of the tracker. Concerning
the color histograms (zC

k ), they do not improve results if used
with these other cues. This is due to the very peaky nature
of the likelihood profile and the limited number of particles.
Moreover, they are very heavy to compute and slow down
the processing. The final RMS error per joint is about12 cm,
with 5 cm on X andY axis and10 cm on Z axis.

With this optimal measurement set, filtering strategies
CONDENSATION, QRS PARTITIONED, PARTITIONED
QRS and APF [1] have been compared. PARTITIONED
strategies use2 partitions: one for the torso localization and
orientation (6 DOF) and one for the arm orientation (8 DOF).
The APF filter is tuned following the hints in [1]. Finally, all
strategies have been normalized with respect to the number
of likelihood evaluations which is the most time-consuming
part. We use Gaussian dynamics with standard deviation of
5 cm for translations and0.2 rad for rotations.

Contrarily to our evaluations on visual cues, the filtering
strategy does not seem to have a great impact on the system
behavior. Fig. 3 shows the average RMS joint error and
the estimate variance, computed as the average variance of
the estimated 3D joint positions over the30 runs of the
tracker. PARTITIONED strategies seem to provide slightly
better results in terms of RMS error and estimator dispersion.
We can also notice that the famous APF performs even
worst than the classical CONDENSATION. This can be
explained by our robotics context where sensors do not
provide enough information (especially in depth) to build
well-conditioned likelihood functions. To support this, we
have tested our algorithms in a classical context of multi-
camera HMC, and we joined the results of the literature [22].
This means that in our ill-conditioned multi-modal robotic
context, measurement cues are of greater importance than
the filtering approach, what has – to our knowledge – never
been reported in the literature. In addition, it seems that RMS
estimation error does not lower very much for a number
of particle N > 500. Thus, using an higher number of
particles would only slow down the system by adding more
computation without improving the average error. In our real-
time robotics context, it is essential to take into account this
key point.

B. Qualitative evaluations

Our embedded tracking system have been tested in various
contexts including clear and cluttered background, with3
different subjects. However, even if our robot is a mobile
platform, we assume that it does not move when it is
interacting with the subject. So, on a given sequence, cameras
are fixed. We also suppose that there is only one interacting
person in front of the cameras. However, even if we use a
motion mask for skin blob and edge detection, the subject
can still be tracked even if he stops moving for a few seconds,
because the filter Gaussian dynamics is a random walk.
Consequently to the above evaluation, we have implemented
a PARTITIONED QRS filter withzED, zSD andz3D cues.
Our system currently performs at5 Hz on 320 × 240 pixel
frames with400 particles.

Fig. 4 presents a complex sequence with a cluttered
background and a subject whose motion varies in depth
and who goes out of the field of view of the camera.
Only the images from one camera are shown. Despite the
somewhat high RMS error on theZ axis, we can see that
the tracking is visually satisfying. Furthermore, our tracker
“initializes” automatically after a few frames due to our
hybrid measurement cues (appearance based and geometric)
which improve the state space exploration: this enables the



Fig. 3. RMS estimation error (left) and estimator dispersion (right) for different filtering strategies.

target to be locked even if the particle cloud is very far from
it. When the subject grabs an object to give it to the robot,
the tracker successfully localizes his hands. Currently, our
system is efficient from1 m to ∼ 4 m.

In the sequence presented on Fig. 5, a different subject
performs a reading activity in front of the robot. The auto-
matic initialization is still efficient and the whole tracking is
successful, despite a partial occlusion of the torso behindthe
table.

All these screenshots have been taken from the robot while
the tracker was running in real-time. All videos can be seen
at the URLwww.laas.fr/∼mfontmar.

VI. CONCLUSIONS AND FUTURE WORKS

We proposed a visual HMC system embedded on a mobile
robot. In order to deal with the robotics drastic constraints,
we proposed a comparison of various measurement cues and
particle filtering strategies. It appears that the selection of
visual cues greatly affects the tracking behavior while the
filtering strategy seems less important in our ill conditioned
robotics context. The fusion of fast computed classical ap-
pearance based visual cues and3D geometric information
derived from a sparse3D reconstruction of the scene as well
as the combination of local and global cues are of great
contribution. These hybrid measurements finally enable a
satisfying tracking of the upper human body model in real
time in various indoor environments, showing that visual
based Human-Robot interaction is within reach.

Some improvements of our system could entail the defi-
nition of less classical visual cues to enable a more robust
tracking, especially for elbow localization. One could also
implement them on a GPU as this would significantly
reduce computation time, and thus, improve the reactivity
of our system. To go further in mixing appearance based
and geometric cues, we could exploit3D sensors such as

the Swiss Ranger. Furthermore, in order to provide a rich
means of communication between the human and the robot,
this work will be coupled with motion/activity recognition
techniques.
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