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Abstract— In this paper, we present a visual human motion  On the one hand approaches based3@nreconstruction
capture (HMC) system embedded on a mobile robot. The aims at fitting the articulated model on tB® point cloud
estimation of the 3D location and configuration of our 14 DOF issued from &D sensor systene.g.a stereo head [5] or a

model of the upper human body is performed with a particle -
filter. We use a stereoscopic camera to derive appearance based Swiss Ranger [6]. On the other hand, the appearance-based

visual cues together with 3D measurements computed from a @pproa_‘Ch?S ir_lfer the model pose and c_onfiguration from
sparse 3D reconstruction. A comparative study is carried out its projection in monocular [7], [3] or multi-ocular [1], 2

in order to achieve the best association between measurement image sequences. These last strategies enable the derivati
cues and filtering strategies in our robotics context. The system ¢ ahyndant appearance information from the image contents
performs in real-time in various indoor environments. . . . . ..
yet they.may m|sest|mate the motion-in-depth. Thls is so
I. INTRODUCTION when using a single camera, or even a short-baseline stereo

. . amera setup such as these widely used in mobile robotics.
A major challenge of Robotics is undoubtedly the person : -

; ) Qur approach aims at mixing advantages of both appearance-
robot, with the perspective for such an autonomous mobile

platform to serve humans in their daily life. In such a cohtex ased and 3D reconstruction methods.

human motion capture (HMC) systems are of great interest asgﬁgggd'gi éhlfniis'r:n:;'Ogg{ggef?l?érg?gf) C[:gi”r(])a\slgnurlisgg
they enable the robot to localize the human and to analy. ' P P

his/her configuration. HMC constitutes the groundwork Owes”u?#Itt?:nt%:%gonrtgl;(;bliﬂtdez(ijs’trtirl])i{ionrﬁkgn?;kijti;C:Ir\:e
many activities such as interpretation of tasks, poses @ﬁaractperization of thpe robler)rq and permit an easy fusion o
motions, coordinated object manipulation, imitation feag. P ' P y

Embedding HMC systems thanks to conventional Camer(,géverse kinds of measurements. The main drawback for con-

mounted on a robot would give it the ability to act ir1venti0nal PFs remains the number of required particleshwvhic

2 soially and human aware way, and cnable the user §'EA5e SONENLEl wib e salespace dmensina,
communicate thanks to a natural and rich means. P ’ P P

Besides,3D tracking from a mobile platform is a very techniques have been proposed together with more efficient

challenging task, which imposes several requirementst,FirS"’Impfhngtm?thlcl)dﬂs1 [41, [9]'. h di der t
the embedded sensors are positioned close to each othe ront of all these various approaches and in order 1o

and so cover a narrow field of view comparatively to muli>€tuP an embedded HMC system, we propose a quantitative

ocular systems. As the robot’s evolution takes place withiffvaluation of many state-of-the-arts methods so as to find
a wide variety of environmental conditions, backgroun ut which combination of filtering strategy and measurement

modeling techniques [1], [2], [3] are precluded and th&Yes performs best.

tracker gets inevitably faced with ambiguous data. Moreove The paper is organized as follows. Section Il presents our
frequent occurrences of mutual occlusions between limbs resbot and the system architecture. Then, sections Il and
quire automatic (re-)initialization procedures. Cleasigveral |V respectively present the compared filtering strategies a
hypotheses must be handled simultaneously, and a robgsé measurements cues. Associated evaluations togetther wi
integration of multiple visual cues is necessary. Finaly, some screenshots of the final system are presented in section
board processing power is limited and care must be takenyo Last, section VI summarizes our contribution and puts
design computationally efficient algorithms. forward some future extensions.

All these problems_result in very few fully integrated ll. SYSTEM ARCHITECTURE
3D HMC systems on interactive robots. Consequently, our
challenge is to design an HMC system which copes with the We have set up the experiments on our JIDO robot. This
above robotics requirements. To tackle this problem, vario MP-L655 platform from Neobotix is a mobile manipulator
methods have been proposed in the literature. robot designed to interact with human beings. It embeds

Most of the existing approaches have concentrated gnany sensors among which laser scanners and two stereo
3D articulated models of the tracked human limbs in ordeeamera banks. In this paper, we use stereo cameras mounted
to make the problem more tractable (see a survey in [4]pn a pan-tilt unit at the top of its mast in order to exploit
They essentially differ in the sensor setup and the assatiata larger field (_)f view. A _cIa;sicaI _interaction context is
data processing so that two main classes can be exhibitgdesented on Fig. 1. JIDO is fitted with the Genom software

architecture thoroughly presented in [10].

tCNRS; LAAS; 7 avenue du Colonel ROCHE, F-31077, Toulousan&e Our tracking system is implemented in a module named

tUniversié de Toulouse; UPS, INSA, INP, ISAE; LAAS; F-31077, “HMC” fully i din th . hi .
Toulouse, France " fully integrated in the existing architecture. Itsrier

firstnane. | astnane@ aas. fr function is detailed in Fig. 2. First, it reads the stereodem



compare various combination of visual cues and filtering
algorithms, which are presented below.

I1l. PARTICLE FILTER FRAMEWORK

A. Basics

In a stochastic Bayesian filtering approach to motion
capture, the 3D template situation and configuration param-
eters to be estimated are first incorporated in a state vector
x, Whose (given) initial probability density function (pdf)
and prior dynamics write apo(xo) and p(xy|xz_1). At
any time k, the available visual data, symbolized hy,
is related tox; by the observation density(zy|xy).

Fig. 1. A typical situation of Human-Robot interaction. Theper right Due to the high number of degrees of freedom (DOF)
part of the image represents the robot perception and therisymsed  of the underlying articulated 3D model and to the diffi-
avatar is the estimated configuration. culty to assess its projection onto the current images, the
posterior pdf p(xy|z1.;) to be estimated is multimodal,
defined in an high-dimensional state space, and unavail-
able in closed-form. A point-mass (or particle) approxima-
.. ) tion p(xx|z1.x) =~ Zfil w,(j)é(xk - x,(;))7 Zfil wl(;) =1is
T then recursively propagated along time through sequential

Monte Carlo estimation methods [8], [11]. An approxima-
tion of the minimum mean-square error estimate (MMSEE)
E(x|2z1.,) follows.

The celebrated “Sampling Importance Resampling” (SIR)
algorithm [8] operates in three major steps. First, theiglag
Fig. 2. The HMC module implementation. x,(c’), 1 = 1..N are drawn from an importance function
q(xk\xgﬁl, zi), selected to adaptively explore relevant areas

. ) of the state space. Then, the Weightéf) are updated
from the camera. Some classical enhancement routines g€ansure the consistency of the point-mass approximation
applied in thepreprocessing module: white balance (in o the posterior pdf taking into account the observation
order to lower illumination changes), distortion correnli  gensity. Last, when the approximation tends to degeneaate,
image crop and resize, ... Then, theocessing module is  yagampling stage is inserted. Importantly, the SIR franewo
in charge of extracting relevant information from the IMBYeencompasses the CONDENSATION [11] as well as impor-
using more or less classical visual cues (edge detectionnce sampling from the images. We present below some less

motion flow, ...). Thefiltering module finally estimates the \,q|1-known algorithms than the classical CONDENSATION
3D human pose thanks to a PF scheme, taking into accoyfit Apr [1].

some prior dynamics and the extracted visual cues which are
evaluated through thmeasurement module. . )

As we aim at proposing a markerless embedded HME' PARTITIONED particle filter
system, we focus on the tracking of the upper human Contrarily to a common belief, the computation time of
body. Indeed, interactions rely mainly on hand and heaal particle filter for general problems, though linear in the
movements. Thus, our model includes the torso, the headimber of particles, is exponential in the system order for a
and the arms. We suppose that the head is fixed w.r.t. tfized dimension-free error [12]. To lower this complexity,
torso because estimating head orientation needs verysprecnany algorithms have been proposed. When the system
cues and the adopted image resolution is not sufficient to dtynamics comes as the sequenceldf partial evolutions
so. The model is based on a kinematic tree consisting of p,,,(x;*|x;" ') of the state vectok}" at stepm and when
body segments antl4 DOF (6 for global localization and intermediate likelihoods,, (x}|zx), m = 1..M, can be as-
orientation,3 for each shoulder and for each elbow). It sessed after applying each partial dynamics, PARTITIONED
is fleshed out using truncated cones with fixed dimensionschemes apply [9].
These geometric primitives are easily handled and hiddenFrom a succession of sampling operations followed by
part removal can be obtained in closed form. As our bodsesampling based on the intermediate likelihoods, thegbart
model must be able to suit various subjects, member size atloud can be successively refined towards areas of the state
fixed to the human average. We assume Gaussian randspace in which the posterior is dense. The computational
walk prior dynamics. complexity then becomes linear in the number of partitions.

The challenge here is to combine measurement cues alhdcan be applied for hierarchical systems where the root
filtering strategies in the best way to provide a reliabldas to be placed before the leaves, armffist/fingers, or
tracking system under real-time constraints. To this eral, worso/arms in our case.

Edge Distance, Skin Proba, Motion Mask

Skin Blob Distance,
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PARTITIONEDQRS, APF Edge Distance, ..




TABLE |
PARTITIONED QRS:PARTITIONED PARTICLE FILTER EXPLOITING
QMC TECHNIQUES

1) Color histogram: As in [16], we associate color his-
tograms toN¢ specific regions of interest (ROI) on our body
model. For a given state hypothests, the likelihood is

(7w} ¥ = PARTITIONEDQRS({(x) ,,w )N ,.2) COMPUted through

Nc
D 1
C
1: IF £ =0, THEN Sample a uniform randomized Sobol QMC p(zy; [xx) o< exp (—) . D= 7]\70 E B(cxy,ir €i)s
~ i=1

2
sequenceu ..., u™ then tumn it intox{", ... x{" 20¢
po(xo) - Setw) = L. END IF where B denotes the Bhattacharyya distaneg, ; is the
2: IF k2 1 THEN, o color histogram modeling the image appearance ofithe
i; Egtr\fom::ﬁ’kﬁ a[r;gxk =X i=1.N ROI on the projected model under hypothesijs c; is the
5 Independéntlil draws™, .. s into 1..N such that referer}ce histogram,. Ie_arnt on the first_frame, and the
P(s® = j) =19 - SetC; = card({i|]s) = j}) a priori standard deviation of our Gaussian measure model.
6: FOR j = 1..N, DO We chose to set up ROIs on the middle of arms, forearms
7 Sample a uniform randomized Sobol QMC and torso for a better learning of the model appearance.
sequence u(l),m,u(Cj)jflthen turn it into 2) Edge distance:The shape related likelihood is clas-
= G G @9 4 according  sically computed using the sum of the squared distances
to pm(x;”|x;”‘1’(”) between model points and the nearest image edges [11].
8: END FOR @ D) _ TheseN, model pointspx, ;i € {1,..., N, } for a config-
& Update the weights,, o lin(zx[x;""), then normalize ;ra1i0nx, are chosen to be uniformly distributed along the

them so thafy>, 77 = 1

0. END FOR model projected segments. Edges of the image are extracted

111 Setw!” =¥ andx(? = x for i = 1..N o with a Canny igtector. Th(: result can pe filtered with a
12.  Approximate the MMSEEE (xyz1.) by S~ , w(Vx(® movement mask in or_der to focus on moving gdges. In some
13: END IF implementations, the image can be converted into a Distance

Transform image, notedgp, which is used to pick the

distance value [17]. The likelihood of a state hypothesis
) o is given by
C. Quasi Monte Carlo filtering methods N
. . 2 P
Pure random importance sampling leads to “gaps and, rp D D= 1 I ,
clusters” in the particle support, especially in high-dirsien %<Z’“ i) o exp 2045 ) N, ; B0 (P i),
spaces. An excessive Monte Carlo variation of the predistio ) ) ) )
can follow, making the filter unreliable or even leading taVN€ré/zn(px, i) is the associated value in the edge distance
failures. Substituting the random particles by a deterstimi 'M29€, _ _
or randomized low-discrepancy—or “Quasi Monte Carlo” 3) Skin color distanceHands of the subject play a great
(QMC)—sequence can lead to a better convergence rate w.fqle in the interaction process. Moreover, their motions ar
the number of particlesV, while lowering the root mean ©ftén faster than these of the other body parts as they
square (RMS) estimation error and leading to a variabilitg@nstitute the ends of our kinematic chains. Consequemndly,
reduction from 5% to 20% [13], [14]. set up an add|t|onal_\_/|su_al cue d¢d|cated to their location.
Among the main issues on QMC filters are the difficulty to® SKin color probability imagels is computed thanks to
design low-discrepancy sequences in spite of the resagpli'€ back-projection of an offline learnt skin color histagra
steps, the exploitation of the current measurement in tHdgh probability zones correspond to the head and hands. As
definition of these sequences, and the possible trade-éffthe case for the previous cue, we can filter the probability
between the reduction of the (quadratic) complexity ang'@P With @ movement mask and build a skin distance image
the mathematical soundness of the algorithms. A QMéSD from the detect_ed _skln blobs. The associated likelihood
counterpart of CONDENSATION, henceforth termed QRST @ state hypothesis,, is then computed by
(for Quasi Random Sampling), is proposed in [15]. We
adapted this idea to the PARTITIONED filter proposed in D? 1¢
: . . . : SD
[9]. The final algorithm is described Table I. The key idea P(z;  |xk) o exp <—202) D= 3 ZISD(hxk,i)v
here is to gather importance sampling and resampling stages SD =1
This enables the generation of low discrepancy sequenogerehy, ;,i € {1,2,3} are the2D coordinates of hands
from a particle to be resampled, thus resulting in a morend head after model projection.
regular state space exploration. 4) 3D skin blob distance:To complete the above visual
cues and to improve the motion-in-depth estimation, we
IV. MEASUREMENT CUES add a geometri@D information issued from a spars

A. Likelihood sub-functions reconstruction. In the vein of [18], we compute the 3D
Our likelihood functionp(zy|x;) involved in the filtering positionsH; = (X,,Y}, Z;) of the person hands and head

algorithm relies on the use of appearance-based cues gride {1,2,3}) : skin color blobs are extracted from each
geometric features. Some more or less widely used atonskin probability image (if many small blobs are near enough
likelihood functions are described below. they are merged), and they are matched in the stereo images



according to criteria defined in [19] and triangulation is With this optimal measurement set, filtering strategies

performed. We define : CONDENSATION, QRS PARTITIONED, PARTITIONED
QRS and APF [1] have been compared. PARTITIONED
strategies use partitions: one for the torso localization and

5,  orientation ¢ DOF) and one for the arm orientatiod DOF).
The APF filter is tuned following the hints in [1]. Finally,lal

D? 1g .
plat?xe) xoxp (<5 ) D= 3 Y- [1Fle - B,
3D i=1

h H. . — f. is the Euclid dist bet strategies have been normalized with respect to the number
where ||H, ; — iz 1S Ihe buclidean distance BEWEEN ¢ . qlinood evaluations which is the most time-consuming

the mass centeH;;, of blob j; (ji € {1,..., Nniv}) @nd o e use Gaussian dynamics with standard deviation of
the 3D position H, ; of a hand or the head of the modely ., tor translations and.2 rad for rotations.

under hypothesisc;. Link between: and j; is done by & conrarily to our evaluations on visual cues, the filtering
simple heuristics involving detected blob 3D position and 3trategy does not seem to have a great impact on the system
face de_t_ector [20]. In some cases, we cannot triangulate then4vior. Fig. 3 shows the average RMS joint error and
3D positions of hands and head (too low number of detectgfle esimate variance, computed as the average variance of
blobs, triangulation error too high, ...). Consequent,  ho estimated 3D joint positions over th® runs of the
information cannot be exploited, and thED skin color  ,cker PARTITIONED strategies seem to provide slightly
distance is then the only cue enabling hand localization. peer results in terms of RMS error and estimator dispersio
Assuming all the above likelihoods are mutually indeWe can also notice that the famous APF performs even
pendent conditioned on the statg, the unified likelihood worst than the classical CONDENSATION. This can be

factorizes as : explained by our robotics context where sensors do not
. ED D 3D provide enough information (especially in depth) to build
p(zklxi) = p(z) [x0)p(z ™ [xi)p (2 [x)p (2 x)- well-conditioned likelihood functions. To support thisgw

In the next section, we present the evaluations of thedi@ve tested our algorithms in a classical context of multi-

measurement cues together with various filtering strasegiecamera HMC, and we joined the results of the literature [22].
This means that in our ill-conditioned multi-modal robotic

V. ROBOTICS EXPERIMENTS context, measurement cues are of greater importance than
Evaluations are performed in order to check which HMGhe filtering approach, what has — to our knowledge — never
strategy, regarding visual cues and PF algorithms, befdt ful been reported in the literature. In addition, it seems thER
our robotics requirements. estimation error does not lower very much for a number
I . of particle N > 500. Thus, using an higher number of
A. Quantitative evaluations . .
) particles would only slow down the system by adding more
30 runs of the tracker are performed o different computation without improving the average error. In out-rea

sequences including various movement types (arm wavingme robotics context, it is essential to take into accobi t
object manipulation, fitness...). Results of our system aigsy point.

compared to a groundtruth acquired thanks to a commercial o .
HMC system from Motion Analysis [21]. We study the RMSB. Qualitative evaluations
(root mean square) error, which is the distance between theOur embedded tracking system have been tested in various
3D average joint position of the estimated model and the trumntexts including clear and cluttered background, with
3D joint positions given by the commercial HMC. different subjects. However, even if our robot is a mobile
Concerning the visual cues comparison, our basis systguatform, we assume that it does not move when it is
focuses on the classical moving edges ond§fX{) through interacting with the subject. So, on a given sequence, G@sner
a CONDENSATION with1000 particles. The tracking is are fixed. We also suppose that there is only one interacting
not satisfactory with an average RMS error greater thaperson in front of the cameras. However, even if we use a
40 em per joint. It appears that addirzp skin color blob motion mask for skin blob and edge detection, the subject
detection £;”) greatly improves the estimation RMS errorcan still be tracked even if he stops moving for a few seconds,
(until 24 em per joint). The constraints imposed on the endecause the filter Gaussian dynamics is a random walk.
of the kinematic chains enable a more robust tracking of th@onsequently to the above evaluation, we have implemented
hands. This speaks in favor of the combination of global ana PARTITIONED QRS filter withz”?, 2" andz*” cues.
local attributes. Our system currently performs &tH z on 320 x 240 pixel
Moreover, the use of spars® reconstruction to localize frames with400 particles.
the hands and the head;{’) lowers the estimation RMS  Fig. 4 presents a complex sequence with a cluttered
error of 10 ¢m, mainly on theZ axis. Thus, mixing2D and  background and a subject whose motion varies in depth
3D cues enable a better behavior of the tracker. Concernirgnd who goes out of the field of view of the camera.
the color histogram&f), they do not improve results if used Only the images from one camera are shown. Despite the
with these other cues. This is due to the very peaky natusmmewhat high RMS error on th& axis, we can see that
of the likelihood profile and the limited number of particles the tracking is visually satisfying. Furthermore, our k®ic
Moreover, they are very heavy to compute and slow dowfinitializes” automatically after a few frames due to our
the processing. The final RMS error per joint is abtitm,  hybrid measurement cues (appearance based and geometric)
with 5 ¢m on X andY axis and10 ¢m on Z axis. which improve the state space exploration: this enables the
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Fig. 3. RMS estimation error (left) and estimator dispersioghf) for different filtering strategies.

target to be locked even if the particle cloud is very far fronmthe Swiss Ranger. Furthermore, in order to provide a rich

it. When the subject grabs an object to give it to the robotneans of communication between the human and the robot,

the tracker successfully localizes his hands. Currently, othis work will be coupled with motion/activity recognition

system is efficient froml m to ~ 4 m. techniques.
In the sequence presented on Fig. 5, a different subject

performs a reading activity in front of the robot. The auto- _ ACKNOWLEDGEMENT‘_Q’ _

matic initialization is still efficient and the whole trackj is This work was partially conducted within the french ANR
successful, despite a partial occlusion of the torso betiad Pproject AMORCES.
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